Universal one-way hash function

Last updated

In cryptography a universal one-way hash function (UOWHF, often pronounced "woof") is a type of universal hash function of particular importance to cryptography. UOWHFs are proposed as an alternative to collision-resistant hash functions (CRHFs). CRHFs have a strong collision-resistance property: that it is hard, given randomly chosen hash function parameters, to find any collision of the hash function. In contrast, UOWHFs require that it be hard to find a collision where one preimage is chosen independently of the hash function parameters. The primitive was suggested by Moni Naor and Moti Yung and is also known as "target collision resistant" hash functions; it was employed to construct general digital signature schemes without trapdoor functions, and also within chosen-ciphertext secure public key encryption schemes.

Contents

The UOWHF family contains a finite number of hash functions with each having the same probability of being used.

Definition

The security property of a UOWHF is as follows. Let be an algorithm that operates in two phases:

Then for all polynomial-time the probability that succeeds is negligible.

Applications

UOWHFs are thought to be less computationally expensive than CRHFs, and are most often used for efficiency purposes in schemes where the choice of the hash function happens at some stage of execution, rather than beforehand. For instance, the Cramer–Shoup cryptosystem uses a UOWHF as part of the validity check in its ciphertexts.

See also

Further reading

Related Research Articles

A chosen-ciphertext attack (CCA) is an attack model for cryptanalysis where the cryptanalyst can gather information by obtaining the decryptions of chosen ciphertexts. From these pieces of information the adversary can attempt to recover the hidden secret key used for decryption.

In computer science, a one-way function is a function that is easy to compute on every input, but hard to invert given the image of a random input. Here, "easy" and "hard" are to be understood in the sense of computational complexity theory, specifically the theory of polynomial time problems. Not being one-to-one is not considered sufficient for a function to be called one-way.

An adaptive chosen-ciphertext attack is an interactive form of chosen-ciphertext attack in which an attacker first sends a number of ciphertexts to be decrypted chosen adaptively, and then uses the results to distinguish a target ciphertext without consulting the oracle on the challenge ciphertext. In an adaptive attack, the attacker is further allowed adaptive queries to be asked after the target is revealed. It is extending the indifferent (non-adaptive) chosen-ciphertext attack (CCA1) where the second stage of adaptive queries is not allowed. Charles Rackoff and Dan Simon defined CCA2 and suggested a system building on the non-adaptive CCA1 definition and system of Moni Naor and Moti Yung.

A commitment scheme is a cryptographic primitive that allows one to commit to a chosen value while keeping it hidden to others, with the ability to reveal the committed value later. Commitment schemes are designed so that a party cannot change the value or statement after they have committed to it: that is, commitment schemes are binding. Commitment schemes have important applications in a number of cryptographic protocols including secure coin flipping, zero-knowledge proofs, and secure computation.

In cryptography, a Schnorr signature is a digital signature produced by the Schnorr signature algorithm that was described by Claus Schnorr. It is a digital signature scheme known for its simplicity, among the first whose security is based on the intractability of certain discrete logarithm problems. It is efficient and generates short signatures. It was covered by U.S. patent 4,995,082 which expired in February 2010.

In cryptography, a random oracle is an oracle that responds to every unique query with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted.

In cryptography, a preimage attack on cryptographic hash functions tries to find a message that has a specific hash value. A cryptographic hash function should resist attacks on its preimage.

The Cramer–Shoup system is an asymmetric key encryption algorithm, and was the first efficient scheme proven to be secure against adaptive chosen ciphertext attack using standard cryptographic assumptions. Its security is based on the computational intractability of the Decisional Diffie–Hellman assumption. Developed by Ronald Cramer and Victor Shoup in 1998, it is an extension of the ElGamal cryptosystem. In contrast to ElGamal, which is extremely malleable, Cramer–Shoup adds other elements to ensure non-malleability even against a resourceful attacker. This non-malleability is achieved through the use of a universal one-way hash function and additional computations, resulting in a ciphertext which is twice as large as in ElGamal.

Ciphertext indistinguishability is a property of many encryption schemes. Intuitively, if a cryptosystem possesses the property of indistinguishability, then an adversary will be unable to distinguish pairs of ciphertexts based on the message they encrypt. The property of indistinguishability under chosen plaintext attack is considered a basic requirement for most provably secure public key cryptosystems, though some schemes also provide indistinguishability under chosen ciphertext attack and adaptive chosen ciphertext attack. Indistinguishability under chosen plaintext attack is equivalent to the property of semantic security, and many cryptographic proofs use these definitions interchangeably.

In cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where ab but H(a) = H(b). The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions; the harder they are to find, the more cryptographically secure the hash function is.

<span class="mw-page-title-main">One-way compression function</span> Cryptographic primitive

In cryptography, a one-way compression function is a function that transforms two fixed-length inputs into a fixed-length output. The transformation is "one-way", meaning that it is difficult given a particular output to compute inputs which compress to that output. One-way compression functions are not related to conventional data compression algorithms, which instead can be inverted exactly or approximately to the original data.

In mathematics and computing, universal hashing refers to selecting a hash function at random from a family of hash functions with a certain mathematical property. This guarantees a low number of collisions in expectation, even if the data is chosen by an adversary. Many universal families are known, and their evaluation is often very efficient. Universal hashing has numerous uses in computer science, for example in implementations of hash tables, randomized algorithms, and cryptography.

In cryptography, a pseudorandom permutation (PRP) is a function that cannot be distinguished from a random permutation (that is, a permutation selected at random with uniform probability, from the family of all permutations on the function's domain) with practical effort.

The forking lemma is any of a number of related lemmas in cryptography research. The lemma states that if an adversary, on inputs drawn from some distribution, produces an output that has some property with non-negligible probability, then with non-negligible probability, if the adversary is re-run on new inputs but with the same random tape, its second output will also have the property.

In hash-based cryptography, the Merkle signature scheme is a digital signature scheme based on Merkle trees and one-time signatures such as the Lamport signature scheme. It was developed by Ralph Merkle in the late 1970s and is an alternative to traditional digital signatures such as the Digital Signature Algorithm or RSA. NIST has approved specific variants of the Merkle signature scheme in 2020.

In cryptography, Very Smooth Hash (VSH) is a provably secure cryptographic hash function invented in 2005 by Scott Contini, Arjen Lenstra and Ron Steinfeld. Provably secure means that finding collisions is as difficult as some known hard mathematical problem. Unlike other provably secure collision-resistant hashes, VSH is efficient and usable in practice. Asymptotically, it only requires a single multiplication per log(n) message-bits and uses RSA-type arithmetic. Therefore, VSH can be useful in embedded environments where code space is limited.

In cryptography, cryptographic hash functions can be divided into two main categories. In the first category are those functions whose designs are based on mathematical problems, and whose security thus follows from rigorous mathematical proofs, complexity theory and formal reduction. These functions are called Provably Secure Cryptographic Hash Functions. To construct these is very difficult, and few examples have been introduced. Their practical use is limited.

In cryptography, SWIFFT is a collection of provably secure hash functions. It is based on the concept of the fast Fourier transform (FFT). SWIFFT is not the first hash function based on FFT, but it sets itself apart by providing a mathematical proof of its security. It also uses the LLL basis reduction algorithm. It can be shown that finding collisions in SWIFFT is at least as difficult as finding short vectors in cyclic/ideal lattices in the worst case. By giving a security reduction to the worst-case scenario of a difficult mathematical problem, SWIFFT gives a much stronger security guarantee than most other cryptographic hash functions.

Post-quantum cryptography (PQC), sometimes referred to as quantum-proof, quantum-safe or quantum-resistant, is the development of cryptographic algorithms that are thought to be secure against a cryptanalytic attack by a quantum computer. The problem with popular algorithms currently used in the market is that their security relies on one of three hard mathematical problems: the integer factorization problem, the discrete logarithm problem or the elliptic-curve discrete logarithm problem. All of these problems could be easily solved on a sufficiently powerful quantum computer running Shor's algorithm or even faster and less demanding alternatives.

In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example, cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.