A variable-position horizontal stabilizer changes the pitch simultaneously with the flaperon setting.
Normally the horizontal stabilizer also known as tailplane is fixed and has a hinged elevator, a stabilator is another method that combines the functions of an elevator and a horizontal stabilizer.
The variable-position horizontal stabilizer is governed by the flaperon setting: the settings of the flaperon control produce corresponding changes to the stabilizer angle of incidence, thus defining the trim airspeed in relation to the flaperon requirements. The conventional elevator remains in trail, minimizing trim drag. Flaperon settings are used to optimize the lift and drag of a wing. When the flight requires low speed the flaperons are in a positive position and when the flight requires high speed flaperons are in a negative position.
A flaperon on an aircraft's wing is a type of control surface that combines the functions of both flaps and ailerons. Some smaller kitplanes have flaperons for reasons of simplicity of manufacture, while some large commercial aircraft may have a flaperon between the flaps and aileron.
A tailplane, also known as a horizontal stabiliser, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplanes. Not all fixed-wing aircraft have tailplanes. Canards, tailless and flying wing aircraft have no separate tailplane, while in V-tail aircraft the vertical stabilizer, rudder, and the tail-plane and elevator are combined to form two diagonal surfaces in a V layout.
A stabilator, more frequently all-moving tail or all-flying tail, is a fully movable aircraft stabilizer. It serves the usual functions of longitudinal stability, control and stick force requirements otherwise performed by the separate parts of a conventional horizontal stabilizer and elevator. Apart from a higher efficiency at high Mach number, it is a useful device for changing the aircraft balance within wide limits, and for mastering the stick forces.
A wing is a type of fin that produces lift, while moving through air or some other fluid. As such, wings have streamlined cross-sections that are subject to aerodynamic forces and act as an airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.
An aileron is a hinged flight control surface usually forming part of the trailing edge of each wing of a fixed-wing aircraft. Ailerons are used in pairs to control the aircraft in roll, which normally results in a change in flight path due to the tilting of the lift vector. Movement around this axis is called 'rolling' or 'banking'.
Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.
A conventional fixed-wing aircraft flight control system consists of flight control surfaces, the respective cockpit controls, connecting linkages, and the necessary operating mechanisms to control an aircraft's direction in flight. Aircraft engine controls are also considered as flight controls as they change speed.
Elevators are flight control surfaces, usually at the rear of an aircraft, which control the aircraft's pitch, and therefore the angle of attack and the lift of the wing. The elevators are usually hinged to the tailplane or horizontal stabilizer. They may be the only pitch control surface present, sometimes located at the front of the aircraft or integrated into a rear "all-moving tailplane" also called a slab elevator or stabilator.
Flaps are a kind of high-lift device used to increase the lift of an aircraft wing at a given airspeed. Flaps are usually mounted on the wing trailing edges of a fixed-wing aircraft. Flaps are used for extra lift on takeoff. Flaps also cause an increase in drag in mid-flight, so they are retracted when not needed.
The empennage, also known as the tail or tail assembly, is a structure at the rear of an aircraft that provides stability during flight, in a way similar to the feathers on an arrow. The term derives from the French language word empenner which means "to feather an arrow". Most aircraft feature an empennage incorporating vertical and horizontal stabilising surfaces which stabilise the flight dynamics of yaw and pitch, as well as housing control surfaces.
Flight mechanics are relevant to fixed wing and rotary wing (helicopters) aircraft. An aeroplane, is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".
Trim tabs are small surfaces connected to the trailing edge of a larger control surface on a boat or aircraft, used to control the trim of the controls, i.e. to counteract hydro- or aerodynamic forces and stabilise the boat or aircraft in a particular desired attitude without the need for the operator to constantly apply a control force. This is done by adjusting the angle of the tab relative to the larger surface.
Mach tuck is an aerodynamic effect whereby the nose of an aircraft tends to pitch downward as the airflow around the wing reaches supersonic speeds. This diving tendency is also known as "tuck under". The aircraft will first experience this effect at significantly below Mach 1.
An aircraft stabilizer is an aerodynamic surface, typically including one or more movable control surfaces, that provides longitudinal (pitch) and/or directional (yaw) stability and control. A stabilizer can feature a fixed or adjustable structure on which any movable control surfaces are hinged, or it can itself be a fully movable surface such as a stabilator. Depending on the context, "stabilizer" may sometimes describe only the front part of the overall surface.
In aeronautics spoilerons, also known as spoiler ailerons, are flight control surfaces, specifically spoilers that can be used asymmetrically to provide adequate roll control if aileron action would produce excessive wing twist on a very flexible wing or if wide-span flaps prevent adequate aileron roll control.
Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces, such as wings, propellers, rotor blades, engine intakes, and environmental control intakes. If ice is allowed to build up to a significant thickness it can change the shape of airfoils and flight control surfaces, degrading the performance, control or handling characteristics of the aircraft. An ice protection system either prevents formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness.
The Silent 2 Targa is a single seater sailplane of Italian manufacture. It is of the FAI DU Class glider. It is sold by Alisport ready-to-fly or kit-built as pure glider or self-launching glider. The self-launching version can be fitted with a single-blade propeller belt-driven by a two-stroke engine or with a double-blade folding propeller directly driven by an electric motor.
The Alisport Silent 2 is a single seater sailplane of Italian manufacture. It is of the FAI type DU Class glider. It is sold by Alisport ready-to-fly or kit-built as pure glider or self-launching glider.
Aircraft with fly-by-wire flight controls usually have computer-controlled flight control modes, sometimes also called flight control laws; they are an application of modes in user interfaces. Their purpose is to modify the way in which human control inputs are translated to the flight control surfaces, and ultimately its path of movement, in a way appropriate to different situations or flight regimes.
A three-surface aircraft or sometimes three-lifting-surface aircraft has a foreplane, a central wing and a tailplane. The central wing surface always provides lift and is usually the largest, while the functions of the fore and aft planes may vary between types and may include lift, control and/or stability.
Trim drag is the aerodynamic drag component of an aircraft created by the flight control surfaces on an aircraft, mainly elevators and trimable horizontal stabilizers, when they are used to offset the changes in center of gravity as the aircraft flies. For a natural stability in pitch and in speed, aircraft are designed in such a way that the center of mass is forward of the center of lift. The nose-down momentum is compensated by the downward aerodynamic effect of the elevator and the trimable horizontal stabilizer. This required "negative lift" of the tailplane produces induced aerodynamic drag in a similar way as the positive lift of the wing produces induced aerodynamic drag. The changes (shifts) of the position of the center of mass are often caused by fuel being burned off over the period of the flight and require the aerodynamic trim force to be adjusted. They are magnified in designs where the wing planform is not arranged to lie directly outward from the fuselage, as in a swept wing or delta wing aircraft. Systems that actively pump fuel between separate fuel tanks in the aircraft can be used to offset this effect and reduce the trim drag component.