Variable Valve Control

Last updated

VVC (Variable Valve Control) is an automobile variable valve timing technology developed by Rover and applied to some high performance variants of the company's K Series 1800cc engine.

Contents

About

In order to improve the optimisation of the valve timing for differing engine speeds and loads, the system is able to vary the timing and duration of the inlet valve opening. It achieves this by using a complex and finely machined mechanism to drive the inlet camshafts. This mechanism can accelerate and decelerate the rotational speed of the camshaft during different parts of its cycle. e.g. to produce longer opening duration, it slows the rotation during the valve open part of the cycle and speeds it up during the valve closed period.

The system has the advantage that it is continuously variable rather than switching in at a set speed. Its disadvantage is the complexity of the system and corresponding price. Other systems will achieve similar results with less cost and simpler design (electronic control).

For a more detailed description, see the sandsmuseum link below.

Applications

MG Rover cars

Non MG/Rover cars

See also

Related Research Articles

<span class="mw-page-title-main">Camshaft</span> Mechanical component that converts rotational motion to reciprocal motion

A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion. Camshafts are used in piston engines, mechanically controlled ignition systems and early electric motor speed controllers.

<span class="mw-page-title-main">Rover K-series engine</span> Reciprocating internal combustion engine

The Rover K-series engine is a series of internal combustion engines built by Powertrain Ltd, a sister company of MG Rover. The engine was a straight-four cylinder built in two forms, SOHC and DOHC, ranging from 1.1 to 1.8 L; 67.9 to 109.6 cu in.

<span class="mw-page-title-main">VTEC</span> Automobile variable valve timing technology

VTEC is a system developed by Honda to improve the volumetric efficiency of a four-stroke internal combustion engine, resulting in higher performance at high RPM, and lower fuel consumption at low RPM. The VTEC system uses two camshaft profiles and hydraulically selects between profiles. It was invented by Honda engineer Ikuo Kajitani. It is distinctly different from standard VVT systems which change only the valve timings and do not change the camshaft profile or valve lift in any way.

<span class="mw-page-title-main">Variable valve timing</span> Process of altering the timing of a valve lift event

Variable valve timing (VVT) is the process of altering the timing of a valve lift event in an internal combustion engine, and is often used to improve performance, fuel economy or emissions. It is increasingly being used in combination with variable valve lift systems. There are many ways in which this can be achieved, ranging from mechanical devices to electro-hydraulic and camless systems. Increasingly strict emissions regulations are causing many automotive manufacturers to use VVT systems.

<span class="mw-page-title-main">VVT-i</span> Automobile variable valve timing technology

VVT-i, or Variable Valve Timing with intelligence, is an automobile variable valve timing petrol engine technology manufactured by Toyota Group and used by brands Groupe PSA, Toyota, Lexus, Scion, Daihatsu, Subaru, Aston Martin, Pontiac and Lotus Cars. It was introduced in 1995 with the 2JZ-GE engine found in the JZS155 Toyota Crown and Crown Majesta.

<span class="mw-page-title-main">VANOS</span> BMW variable valve timing system

VANOS is a variable valve timing system used by BMW on various automotive petrol engines since 1992. The name is an abbreviation of the German words for variable camshaft timing.

<span class="mw-page-title-main">Inlet manifold</span> Automotive technology

An inlet manifold or intake manifold is the part of an internal combustion engine that supplies the fuel/air mixture to the cylinders. The word manifold comes from the Old English word manigfeald and refers to the multiplying of one (pipe) into many.

<span class="mw-page-title-main">Alfa Romeo Twin Spark engine</span> Reciprocating internal combustion engine

Alfa Romeo Twin Spark (TS) technology was used for the first time in the Alfa Romeo Grand Prix car in 1914. In the early 1960s it was used in their race cars (GTA, TZ) to enable it to achieve a higher power output from its engines. And in the early and middle 1980s, Alfa Romeo incorporated this technology into their road cars to enhance their performance and to comply with stricter emission controls.

<span class="mw-page-title-main">MG F / MG TF</span> Motor vehicle

The MG F and MG TF are mid-engined, rear wheel drive roadster cars that were sold under the MG marque by three manufacturers between 1995 and 2011.

Nissan Variable Timing control or Nissan Valve Timing Control System is an automobile variable valve timing technology developed by Nissan. N-VTC was first introduced in 1987 on the VG30DE and VG20DET engine.

In a piston engine, the valve timing is the precise timing of the opening and closing of the valves. In an internal combustion engine those are usually poppet valves and in a steam engine they are usually slide valves or piston valves.

A camless or free-valve piston engine is an engine that has poppet valves operated by means of electromagnetic, hydraulic, or pneumatic actuators instead of conventional cams. Actuators can be used to both open and close valves, or to open valves closed by springs or other means.

<span class="mw-page-title-main">Rover KV6 engine</span> Reciprocating internal combustion engine

The KV6 automotive petrol engine has a 24-valve quad-cam V6 configuration, and a pressurising variable-length intake manifold to add hot spots throughout the rev range. Variants exist in 2.0 to 2.5 litres capacities. These were built initially by Rover Group, then by Powertrain Ltd. KIA manufactured KV6 in Korea under licence. Production moved from the UK to China in 2005, re-designated NV6.

<span class="mw-page-title-main">Rover 200 Coupé</span> Motor vehicle

The Rover 200 Coupé is a two-door coupé that was produced by Rover and based on the Rover 200 Mark II, with most of the body panels and the bumpers unique in the range. The car was launched on 6 October 1992, at the Paris Motor Show. It was given the project code name 'Tomcat' when in development.

A helical camshaft is a type of mechanical variable valve actuation (VVA) system. More specifically, it is a camshaft that allows the valve opening duration to be varied over a wide, continuous, step-less range, with all of the added duration being at full valve lift.

<span class="mw-page-title-main">MultiAir</span> Automobile variable valve timing technology

MultiAir or Multiair is a hydraulically-actuated variable valve timing (VVT) and variable valve lift (VVL) engine technology enabling "cylinder by cylinder, stroke by stroke" control of intake air directly via a gasoline engine's inlet valves. Developed by Fiat Powertrain Technologies, the technology addresses a primary engine inefficiency: pumping losses caused by restricting intake passage by the throttle plate that regulates air feeding the cylinders.

Variable valve timing (VVT) is a system for varying the valve opening of an internal combustion engine. This allows the engine to deliver high power, but also to work tractably and efficiently at low power. There are many systems for VVT, which involve changing either the relative timing, duration or opening of the engine's inlet and exhaust valves.

Jacobs Vehicle Systems, Inc. is an American company that engineers, develops and manufacturers commercial vehicle retarding and valve actuation technologies. The company produces light-duty, medium-duty, and heavy-duty engine brakes, recreational vehicle exhaust brakes, aftermarket parts and tune-up kits to heavy-duty diesel engine manufacturers in its domestic market in America, as well as in Asia and Europe.

Variable valve lift (VVL) is an automotive piston engine technology which varies the height a valve opens in order to improve performance, fuel economy or emissions. There are two main types of VVL: discrete, which employs fixed valve lift amounts, and continuous, which is able to vary the amount of lift. Continuous valve lift systems typically allow for the elimination of the throttle.

<span class="mw-page-title-main">Modular Engine Management System</span> Electronic control system for Rover car engines

The Modular Engine Management System, or MEMS, is an electronic control system used on engines in passenger cars built by Rover Group in the 1990s. As its name implies, it was adaptable for a variety of engine management demands, including electronically controlled carburetion as well as single- and multi-point fuel injection. The abbreviations "SPi" and "MPi" refer to the single-point and multi-point injection configurations, respectively.