Vegard's law

Last updated

In crystallography, materials science and metallurgy, Vegard's law is an empirical finding (heuristic approach) resembling the rule of mixtures. In 1921, Lars Vegard discovered that the lattice parameter of a solid solution of two constituents is approximately a weighted mean of the two constituents' lattice parameters at the same temperature: [1] [2]

Contents

e.g., in the case of a mixed oxide of uranium and plutonium as used in the fabrication of MOX nuclear fuel:

Vegard's law assumes that both components A and B in their pure form (i.e., before mixing) have the same crystal structure. Here, aA(1-x)Bx is the lattice parameter of the solid solution, aA and aB are the lattice parameters of the pure constituents, and x is the molar fraction of B in the solid solution.

Vegard's law is seldom perfectly obeyed; often deviations from the linear behavior are observed. A detailed study of such deviations was conducted by King. [3] However, it is often used in practice to obtain rough estimates when experimental data are not available for the lattice parameter for the system of interest.

For systems known to approximately obey Vegard's law, the approximation may also be used to estimate the composition of a solution from knowledge of its lattice parameters, which are easily obtained from diffraction data. [4] For example, consider the semiconductor compound InPxAs(1-x). A relation exists between the constituent elements and their associated lattice parameters, a, such that:

When variations in lattice parameter are very small across the entire composition range, Vegard's law becomes equivalent to Amagat's law.

Relationship to band gaps in semiconductors

In many binary semiconducting systems, the band gap in semiconductors is approximately a linear function of the lattice parameter. Therefore, if the lattice parameter of a semiconducting system follows Vegard's law, one can also write a linear relationship between the band gap and composition. Using InPxAs(1-x) as before, the band gap energy, , can be written as:

Sometimes, the linear interpolation between the band gap energies is not accurate enough, and a second term to account for the curvature of the band gap energies as a function of composition is added. This curvature correction is characterized by the bowing parameter, b:

Mineralogy

The following excerpt from Takashi Fujii (1960) [5] summarises well the limits of the Vegard’s law in the context of mineralogy and also makes the link with the Gladstone–Dale equation:

In mineralogy, the tacit assumption for the linear correlation of the density and the chemical composition of a solid solution is twofold: one is an ideal solid solution and the other identical or nearly identical molar volumes of the components. … Coefficients of thermal expansion and compressibilities of the ideal solid solution can be discussed in the same manner. But when the solid solution is ideal, the linear correlation of molar heat capacities and chemical composition is possible. The linear correlation of refractive index and chemical composition of an isotropic solid solution can be derived from the Gladstone–Dale equation, but it is required that the system must be ideal and the molar volumes of the components are equal or nearly equal. If the concept of the volume fraction is introduced, density, coefficient of thermal expansion, compressibility and refractive index can be correlated linearly with the volume fraction in an ideal system.“ [6]

See also

When considering the empirical correlation of some physical properties and the chemical composition of solid compounds, other relationships, rules, or laws, also closely resembles the Vegard's law, and in fact the more general rule of mixtures:

Related Research Articles

<span class="mw-page-title-main">Concentration</span> Ratio of part of a mixture to the whole

In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and solvents in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration. Dilution is reduction of concentration, e.g. by adding solvent to a solution. The verb to concentrate means to increase concentration, the opposite of dilute.

<span class="mw-page-title-main">Equation of state</span> An equation describing the state of matter under a given set of physical conditions

In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.

<span class="mw-page-title-main">Stoichiometry</span> Calculation of relative weights of reactants and products in chemical reactions

Stoichiometry is the relationship between the weights of reactants and products before, during, and following chemical reactions.

<span class="mw-page-title-main">Partial pressure</span> Pressure of a component gas in a mixture

In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas mixture is the sum of the partial pressures of the gases in the mixture.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a solvent in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

In chemistry, the molar mass of a chemical compound is defined as the ratio between the mass and the amount of substance of any sample of said compound. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an average of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on Earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities.

In chemical thermodynamics, activity is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.

In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species in a mixture is defined as the rate of change of free energy of a thermodynamic system with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. In a system in diffusion equilibrium, the chemical potential of any chemical species is uniformly the same everywhere throughout the system.

<span class="mw-page-title-main">Lennard-Jones potential</span> Model of intermolecular interactions

In computational chemistry, the Lennard-Jones potential is an intermolecular pair potential. Out of all the intermolecular potentials, the Lennard-Jones potential is probably the one that has been the most extensively studied. It is considered an archetype model for simple yet realistic intermolecular interactions.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.

In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, which are solutions that exhibit thermodynamic properties analogous to those of an ideal gas, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.

Amagat's law or the law of partial volumes describes the behaviour and properties of mixtures of ideal gases. It is of use in chemistry and thermodynamics. It is named after Emile Amagat.

In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient is equal to one for each component.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In chemical thermodynamics, the fugacity of a real gas is an effective partial pressure which replaces the mechanical partial pressure in an accurate computation of chemical equilibrium. It is equal to the pressure of an ideal gas which has the same temperature and molar Gibbs free energy as the real gas.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

In chemistry, a regular solution is a solution whose entropy of mixing is equal to that of an ideal solution with the same composition, but is non-ideal due to a nonzero enthalpy of mixing. Such a solution is formed by random mixing of components of similar molar volume and without strong specific interactions, and its behavior diverges from that of an ideal solution by showing phase separation at intermediate compositions and temperatures. Its entropy of mixing is equal to that of an ideal solution with the same composition, due to random mixing without strong specific interactions. For two components

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

In cryptography, Learning with errors (LWE) is a mathematical problem that is widely used in cryptography to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

References

  1. Vegard, L. (1921). "Die Konstitution der Mischkristalle und die Raumfüllung der Atome". Zeitschrift für Physik . 5 (1): 17–26. Bibcode:1921ZPhy....5...17V. doi:10.1007/BF01349680. S2CID   120699637.
  2. Denton, A.R.; Ashcroft, N.W. (1991). "Vegard's law". Phys. Rev. A . 43 (6): 3161–3164. Bibcode:1991PhRvA..43.3161D. doi:10.1103/PhysRevA.43.3161. PMID   9905387.
  3. King, H.W. (1966). "Quantitative size-factors for metallic solid solutions". Journal of Materials Science. 1 (1): 79–90. Bibcode:1966JMatS...1...79K. doi:10.1007/BF00549722. ISSN   0022-2461. S2CID   97859635.
  4. Cordero, Zachary C.; Schuh, Christopher A. (2015). "Phase strength effects on chemical mixing in extensively deformed alloys". Acta Materialia. 82 (1): 123–136. Bibcode:2015AcMat..82..123C. doi:10.1016/j.actamat.2014.09.009.
  5. Fujii, Takashi (1960). Correlation of some physical properties and chemical composition of solid solution. The American Mineralogist, 45 (3-4), 370-382. http://www.minsocam.org/ammin/AM45/AM45_370.pdf
  6. Zen, E.-AN (1956). Validity of Vegard’s law. American Mineralogist (1956) 41 (5-6), 523-524. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/41/5-6/523/539644