Weakly holomorphic modular form

Last updated

In mathematics, a weakly holomorphic modular form is similar to a holomorphic modular form, except that it is allowed to have poles at cusps. Examples include modular functions and modular forms.

Contents

Definition

To simplify notation this section does the level 1 case; the extension to higher levels is straightforward.

A level 1 weakly holomorphic modular form is a function f on the upper half plane with the properties:

Examples

The ring of level 1 modular forms is generated by the Eisenstein series E4 and E6 (which generate the ring of holomorphic modular forms) together with the inverse 1/Δ of the modular discriminant.

Any weakly holomorphic modular form of any level can be written as a quotient of two holomorphic modular forms. However, not every quotient of two holomorphic modular forms is a weakly holomorphic modular form, as it may have poles in the upper half plane.

Related Research Articles

<span class="mw-page-title-main">Riemann surface</span> One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold.

The modularity theorem states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

In mathematics, the Dedekind eta function, named after Richard Dedekind, is a modular form of weight 1/2 and is a function defined on the upper half-plane of complex numbers, where the imaginary part is positive. It also occurs in bosonic string theory.

<i>j</i>-invariant

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that

In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by Erich Hecke (1937a,1937b), is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations.

In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.

In mathematics, the Ramanujan conjecture, due to Srinivasa Ramanujan (1916, p. 176), states that Ramanujan's tau function given by the Fourier coefficients τ(n) of the cusp form Δ(z) of weight 12

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

<span class="mw-page-title-main">Modular elliptic curve</span>

A modular elliptic curve is an elliptic curve E that admits a parametrisation X0(N) → E by a modular curve. This is not the same as a modular curve that happens to be an elliptic curve, something that could be called an elliptic modular curve. The modularity theorem, also known as the Taniyama–Shimura conjecture, asserts that every elliptic curve defined over the rational numbers is modular.

In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook. Sander Zwegers discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms.

In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

<span class="mw-page-title-main">Modular lambda function</span>

In mathematics, the modular lambda function λ(τ) is a highly symmetric Holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.

In mathematics, almost holomorphic modular forms, also called nearly holomorphic modular forms, are a generalization of modular forms that are polynomials in 1/Im(τ) with coefficients that are holomorphic functions of τ. A quasimodular form is the holomorphic part of an almost holomorphic modular form. An almost holomorphic modular form is determined by its holomorphic part, so the operation of taking the holomorphic part gives an isomorphism between the spaces of almost holomorphic modular forms and quasimodular forms. The archetypal examples of quasimodular forms are the Eisenstein series E2(τ) (the holomorphic part of the almost holomorphic modular form E2(τ) – 3/πIm(τ)), and derivatives of modular forms.

In mathematics, a Klingen Eisenstein series is a Siegel modular form of weight k and degree g depending on another Siegel cusp form f of weight k and degree r<g, given by a series similar to an Eisenstein series. It is a generalization of the Siegel Eisenstein series, which is the special case when the Siegel cusp form is 1. Klingen Eisenstein series is introduced by Klingen (1967).

In mathematics, a weak Maass form is a smooth function on the upper half plane, transforming like a modular form under the action of the modular group, being an eigenfunction of the corresponding hyperbolic Laplace operator, and having at most linear exponential growth at the cusps. If the eigenvalue of under the Laplacian is zero, then is called a harmonic weak Maass form, or briefly a harmonic Maass form.

In mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed. All of these generalizations are contained in .

References