The zeta function of a mathematical operator is a function defined as
for those values of s where this expression exists, and as an analytic continuation of this function for other values of s. Here "tr" denotes a functional trace.
The zeta function may also be expressible as a spectral zeta function [1] in terms of the eigenvalues of the operator by
It is used in giving a rigorous definition to the functional determinant of an operator, which is given by
The Minakshisundaram–Pleijel zeta function is an example, when the operator is the Laplacian of a compact Riemannian manifold.
One of the most important motivations for Arakelov theory is the zeta functions for operators with the method of heat kernels generalized algebro-geometrically. [2]
In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.
To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory.
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.
In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
In mathematics, a Fredholm kernel is a certain type of a kernel on a Banach space, associated with nuclear operators on the Banach space. They are an abstraction of the idea of the Fredholm integral equation and the Fredholm operator, and are one of the objects of study in Fredholm theory. Fredholm kernels are named in honour of Erik Ivar Fredholm. Much of the abstract theory of Fredholm kernels was developed by Alexander Grothendieck and published in 1955.
In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator S mapping a function space V to itself. The corresponding quantity det(S) is called the functional determinant of S.
In mathematics, Fredholm theory is a theory of integral equations. In the narrowest sense, Fredholm theory concerns itself with the solution of the Fredholm integral equation. In a broader sense, the abstract structure of Fredholm's theory is given in terms of the spectral theory of Fredholm operators and Fredholm kernels on Hilbert space. The theory is named in honour of Erik Ivar Fredholm.
In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.
In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.
In complex analysis and geometric function theory, the Grunsky matrices, or Grunsky operators, are infinite matrices introduced in 1939 by Helmut Grunsky. The matrices correspond to either a single holomorphic function on the unit disk or a pair of holomorphic functions on the unit disk and its complement. The Grunsky inequalities express boundedness properties of these matrices, which in general are contraction operators or in important special cases unitary operators. As Grunsky showed, these inequalities hold if and only if the holomorphic function is univalent. The inequalities are equivalent to the inequalities of Goluzin, discovered in 1947. Roughly speaking, the Grunsky inequalities give information on the coefficients of the logarithm of a univalent function; later generalizations by Milin, starting from the Lebedev–Milin inequality, succeeded in exponentiating the inequalities to obtain inequalities for the coefficients of the univalent function itself. The Grunsky matrix and its associated inequalities were originally formulated in a more general setting of univalent functions between a region bounded by finitely many sufficiently smooth Jordan curves and its complement: the results of Grunsky, Goluzin and Milin generalize to that case.
The Belinski–Zakharov (inverse) transform is a nonlinear transformation that generates new exact solutions of the vacuum Einstein's field equation. It was developed by Vladimir Belinski and Vladimir Zakharov in 1978. The Belinski–Zakharov transform is a generalization of the inverse scattering transform. The solutions produced by this transform are called gravitational solitons (gravisolitons). Despite the term 'soliton' being used to describe gravitational solitons, their behavior is very different from other (classical) solitons. In particular, gravitational solitons do not preserve their amplitude and shape in time, and up to June 2012 their general interpretation remains unknown. What is known however, is that most black holes are special cases of gravitational solitons.
In mathematics, the Ruelle zeta function is a zeta function associated with a dynamical system. It is named after mathematical physicist David Ruelle.
In mathematical physics, the Wu–Sprung potential, named after Hua Wu and Donald Sprung, is a potential function in one dimension inside a Hamiltonian with the potential defined by solving a non-linear integral equation defined by the Bohr–Sommerfeld quantization conditions involving the spectral staircase, the energies and the potential .
An ordinary fractal string is a bounded, open subset of the real number line. Such a subset can be written as an at-most-countable union of connected open intervals with associated lengths written in non-increasing order; we also refer to as a fractal string. For example, is a fractal string corresponding to the Cantor set. A fractal string is the analogue of a one-dimensional "fractal drum," and typically the set has a boundary which corresponds to a fractal such as the Cantor set. The heuristic idea of a fractal string is to study a (one-dimensional) fractal using the "space around the fractal." It turns out that the sequence of lengths of the set itself is "intrinsic," in the sense that the fractal string itself contains information about the fractal to which it corresponds.
In mathematics, and especially differential geometry, the Quillen metric is a metric on the determinant line bundle of a family of operators. It was introduced by Daniel Quillen for certain elliptic operators over a Riemann surface, and generalized to higher-dimensional manifolds by Jean-Michel Bismut and Dan Freed.