Zone Routing Protocol

Last updated

Zone Routing Protocol, or ZRP is a hybrid wireless networking routing protocol that uses both proactive and reactive routing protocols when sending information over the network. ZRP was designed to speed up delivery and reduce processing overhead by selecting the most efficient type of protocol to use throughout the route.

Contents

How ZRP works

If a packet's destination is in the same zone as the origin, the proactive protocol using an already stored routing table is used to deliver the packet immediately.

If the route extends outside the packet's originating zone, a reactive protocol takes over to check each successive zone in the route to see whether the destination is inside that zone. This reduces the processing overhead for those routes. Once a zone is confirmed as containing the destination node, the proactive protocol, or stored route-listing table, is used to deliver the packet.

In this way packets with destinations within the same zone as the originating zone are delivered immediately using a stored routing table. Packets delivered to nodes outside the sending zone avoid the overhead of checking routing tables along the way by using the reactive protocol to check whether each zone encountered contains the destination node.

Thus ZRP reduces the control overhead for longer routes that would be necessary if using proactive routing protocols throughout the entire route, while eliminating the delays for routing within a zone that would be caused by the route-discovery processes of reactive routing protocols.

Details

What is called the Intra-zone Routing Protocol (IARP), or a proactive routing protocol, is used inside routing zones. What is called the Inter-zone Routing Protocol (IERP), or a reactive routing protocol, is used between routing zones. IARP uses a routing table. Since this table is already stored, this is considered a proactive protocol. IERP uses a reactive protocol.

Any route to a destination that is within the same local zone is quickly established from the source's proactively cached routing table by IARP. Therefore, if the source and destination of a packet are in the same zone, the packet can be delivered immediately.

Most existing proactive routing algorithms can be used as the IARP for ZRP.

In ZRP a zone is defined around each node, called the node's k-neighborhood, which consists of all nodes within k hops of the node. Border nodes are nodes which are exactly k hops away from a source node.

For routes beyond the local zone, route discovery happens reactively. The source node sends a route request to the border nodes of its zone, containing its own address, the destination address and a unique sequence number. Each border node checks its local zone for the destination. If the destination is not a member of this local zone, the border node adds its own address to the route request packet and forwards the packet to its own border nodes. If the destination is a member of the local zone, it sends a route reply on the reverse path back to the source. The source node uses the path saved in the route reply packet to send data packets to the destination.

Related Research Articles

<span class="mw-page-title-main">Multicast</span> Computer networking technique for transmission from one sender to multiple receivers

In computer networking, multicast is group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast should not be confused with physical layer point-to-multipoint communication.

<span class="mw-page-title-main">Router (computing)</span> Device that forwards data packets between computer networks

A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions between networks and on the global Internet. Data sent through a network, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork until it reaches its destination node.

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

In computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it.

Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS).

<span class="mw-page-title-main">Optimized Link State Routing Protocol</span> IP routing protocol optimized for mobile ad hoc networks

The Optimized Link State Routing Protocol (OLSR) is an IP routing protocol optimized for mobile ad hoc networks, which can also be used on other wireless ad hoc networks. OLSR is a proactive link-state routing protocol, which uses hello and topology control (TC) messages to discover and then disseminate link state information throughout the mobile ad hoc network. Individual nodes use this topology information to compute next hop destinations for all nodes in the network using shortest hop forwarding paths.

A default gateway is the node in a computer network using the Internet protocol suite that serves as the forwarding host (router) to other networks when no other route specification matches the destination IP address of a packet.

Dynamic Source Routing (DSR) is a routing protocol for wireless mesh networks. It is similar to AODV in that it forms a route on-demand when a transmitting node requests one. However, it uses source routing instead of relying on the routing table at each intermediate device.

The OrderOne MANET Routing Protocol is an algorithm for computers communicating by digital radio in a mesh network to find each other, and send messages to each other along a reasonably efficient path. It was designed for, and promoted as working with wireless mesh networks.

IP multicast is a method of sending Internet Protocol (IP) datagrams to a group of interested receivers in a single transmission. It is the IP-specific form of multicast and is used for streaming media and other network applications. It uses specially reserved multicast address blocks in IPv4 and IPv6.

The Hazy-Sighted Link State Routing Protocol (HSLS) is a wireless mesh network routing protocol being developed by the CUWiN Foundation. This is an algorithm allowing computers communicating via digital radio in a mesh network to forward messages to computers that are out of reach of direct radio contact. Its network overhead is theoretically optimal, utilizing both proactive and reactive link-state routing to limit network updates in space and time. Its inventors believe it is a more efficient protocol to route wired networks as well. HSLS was invented by researchers at BBN Technologies.

<span class="mw-page-title-main">Flooding (computer networking)</span> Simple routing algorithm sending incoming packets to all other links than the sender

Flooding is used in computer networks routing algorithm in which every incoming packet is sent through every outgoing link except the one it arrived on.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

The Multipath On-demand Routing (MOR) protocol is a protocol to connect nodes in wireless sensor networks. It is an ad hoc routing protocol which is reactive or on-demand, meaning that it establishes routes as needed. The advantage of this approach is obvious if only a few routes are needed, since the routing overhead is less compared to the proactive approach of establishing routes whether or not they are needed. The disadvantage of on-demand establishment of routes is that connections take more time if the route needs to be established.

A routing protocol specifies how routers communicate with each other to distribute information that enables them to select routes between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability.

In wired computer networking, including the Internet, a hop occurs when a packet is passed from one network segment to the next. Data packets pass through routers as they travel between source and destination. The hop count refers to the number of network devices through which data passes from source to destination.

Scalable Source Routing (SSR) is a routing protocol for unstructured networks such as mobile ad hoc networks, mesh networks, or sensor networks. It combines source routing with routing along a virtual ring, and is based on the idea of "pushing Chord into the underlay".

IP routing is the application of routing methodologies to IP networks. This involves not only protocols and technologies but includes the policies of the worldwide organization and configuration of Internet infrastructure. In each IP network node, IP routing involves the determination of a suitable path for a network packet from a source to its destination in an IP network. The process uses static configuration rules or dynamically obtained from routing protocols to select specific packet forwarding methods to direct traffic to the next available intermediate network node one hop closer to the desired final destination, a total path potentially spanning multiple computer networks.

Fisheye State Routing (FSR) is a proposal for an implicit hierarchical routing protocol targeted to ad hoc networks. The basic principles of FSR are shared with other proactive, link-state routing protocols. In proactive link-state protocols every network node constantly updates a topology map that makes it possible to compute the shortest path to any destination in the network. The originality of FSR is inspired by the "fisheye" technique to reduce the size of information required to represent graphical data: The eye of a fish captures with high detail the pixels near the focal point, while the detail decreases as the distance from the focal point increases.

References