A4 polytope

Last updated
Orthographic projections
A4 Coxeter plane
4-simplex t0.svg
5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.

Contents

Symmetry

A4 symmetry, or [3,3,3] is order 120, with Conway quaternion notation +1/60[I×I].21. Its abstract structure is the symmetric group S5. Three forms with symmetric Coxeter diagrams have extended symmetry, [[3,3,3]] of order 240, and Conway notation ±1/60[I×I].2, and abstract structure S5×C2.

Visualizations

Each can be visualized as symmetric orthographic projections in Coxeter planes of the A4 Coxeter group, and other subgroups. Three Coxeter plane 2D projections are given, for the A4, A3, A2 Coxeter groups, showing symmetry order 5,4,3, and doubled on even Ak orders to 10,4,6 for symmetric Coxeter diagrams.

The 3D picture are drawn as Schlegel diagram projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.

Uniform polytopes with A4 symmetry
#Name Coxeter diagram
and Schläfli
symbols
Coxeter plane graphs Schlegel diagram Net
A4
[5]
A3
[4]
A2
[3]
Tetrahedron
centered
Dual tetrahedron
centered
1 5-cell
pentachoron
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3,3}
4-simplex t0.svg 4-simplex t0 A3.svg 4-simplex t0 A2.svg Schlegel wireframe 5-cell.png 5-cell net.png
2 rectified 5-cell CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
r{3,3,3}
4-simplex t1.svg 4-simplex t1 A3.svg 4-simplex t1 A2.svg Schlegel half-solid rectified 5-cell.png Rectified pentachoron net.png
3 truncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t{3,3,3}
4-simplex t01.svg 4-simplex t01 A3.svg 4-simplex t01 A2.svg Schlegel half-solid truncated pentachoron.png Truncated pentachoral net.png
4 cantellated 5-cell CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
rr{3,3,3}
4-simplex t02.svg 4-simplex t02 A3.svg 4-simplex t02 A2.svg Schlegel half-solid cantellated 5-cell.png Small rhombated pentachoron net.png
7 cantitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{3,3,3}
4-simplex t012.svg 4-simplex t012 A3.svg 4-simplex t012 A2.svg Schlegel half-solid cantitruncated 5-cell.png Great rhombated pentachoron net.png
8 runcitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,3}
4-simplex t013.svg 4-simplex t013 A3.svg 4-simplex t013 A2.svg Schlegel half-solid runcitruncated 5-cell.png Prismatorhombated pentachoron net.png
Uniform polytopes with extended A4 symmetry
#Name Coxeter diagram
and Schläfli
symbols
Coxeter plane graphs Schlegel diagram Net
A4
[[5]] = [10]
A3
[4]
A2
[[3]] = [6]
Tetrahedron
centered
5*runcinated 5-cell CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,3,3}
4-simplex t03.svg 4-simplex t03 A3.svg 4-simplex t03 A2.svg Schlegel half-solid runcinated 5-cell.png Small prismatodecachoron net.png
6*bitruncated 5-cell
decachoron
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
2t{3,3,3}
4-simplex t12.svg 4-simplex t12 A3.svg 4-simplex t12 A2.svg Schlegel half-solid bitruncated 5-cell.png Decachoron net.png
9*omnitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,3,3}
4-simplex t0123.svg 4-simplex t0123 A3.svg 4-simplex t0123 A2.svg Schlegel half-solid omnitruncated 5-cell.png Great prismatodecachoron net.png

Coordinates

The coordinates of uniform 4-polytopes with pentachoric symmetry can be generated as permutations of simple integers in 5-space, all in hyperplanes with normal vector (1,1,1,1,1). The A4 Coxeter group is palindromic, so repeated polytopes exist in pairs of dual configurations. There are 3 symmetric positions, and 6 pairs making the total 15 permutations of one or more rings. All 15 are listed here in order of binary arithmetic for clarity of the coordinate generation from the rings in each corresponding Coxeter diagram.

The number of vertices can be deduced here from the permutations of the number of coordinates, peaking at 5 factorial for the omnitruncated form with 5 unique coordinate values.

5-cell truncations in 5-space:
#Base pointName
(symmetric name)
Coxeter diagram Vertices
1(0, 0, 0, 0, 1)
(1, 1, 1, 1, 0)
5-cell
Trirectified 5-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
55!/(4!)
2(0, 0, 0, 1, 1)
(1, 1, 1, 0, 0)
Rectified 5-cell
Birectified 5-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
105!/(3!2!)
3(0, 0, 0, 1, 2)
(2, 2, 2, 1, 0)
Truncated 5-cell
Tritruncated 5-cell
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
205!/(3!)
5(0, 1, 1, 1, 2) Runcinated 5-cell CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png205!/(3!)
4(0, 0, 1, 1, 2)
(2, 2, 1, 1, 0)
Cantellated 5-cell
Bicantellated 5-cell
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
305!/(2!2!)
6(0, 0, 1, 2, 2) Bitruncated 5-cell CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png305!/(2!2!)
7(0, 0, 1, 2, 3)
(3, 3, 2, 1, 0)
Cantitruncated 5-cell
Bicantitruncated 5-cell
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
605!/2!
8(0, 1, 1, 2, 3)
(3, 2, 2, 1, 0)
Runcitruncated 5-cell
Runcicantellated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
605!/2!
9(0, 1, 2, 3, 4) Omnitruncated 5-cell CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png1205!

Related Research Articles

4-polytope Four-dimensional geometric object with flat sides

In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells.

5-cell

In geometry, the 5-cell is a four-dimensional object bounded by 5 tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid, or tetrahedral pyramid. It is the 4-simplex (Coxeter's polytope), the simplest possible convex regular 4-polytope (four-dimensional analogue of a Platonic solid), and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The pentachoron is a four dimensional pyramid with a tetrahedral base.

120-cell

In geometry, the 120-cell is the convex regular 4-polytope with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid.

Uniform 4-polytope

In geometry, a uniform 4-polytope is a 4-dimensional polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons.

Runcinated 5-cell

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

Cantellated tesseract

In four-dimensional geometry, a cantellated tesseract is a convex uniform 4-polytope, being a cantellation of the regular tesseract.

Rectified tesseract

In geometry, the rectified tesseract, rectified 8-cell is a uniform 4-polytope bounded by 24 cells: 8 cuboctahedra, and 16 tetrahedra. It has half the vertices of a runcinated tesseract, with its construction, called a runcic tesseract.

Cantellated 5-cell

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell.

Cantellated 24-cells

In four-dimensional geometry, a cantellated 24-cell is a convex uniform 4-polytope, being a cantellation of the regular 24-cell.

Runcinated 24-cells

In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.

Cantellated 120-cell

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation of the regular 120-cell.

Runcinated 120-cells

In four-dimensional geometry, a runcinated 120-cell is a convex uniform 4-polytope, being a runcination of the regular 120-cell.

Pentellated 6-simplexes

In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.

Runcinated 5-orthoplexes

In five-dimensional geometry, a runcinated 5-orthoplex is a convex uniform 5-polytope with 3rd order truncation (runcination) of the regular 5-orthoplex.

In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a rectification of a tesseractic honeycomb which creates new vertices on the middle of all the original edges, rectifying the cells into rectified tesseracts, and adding new 16-cell facets at the original vertices. Its vertex figure is an octahedral prism, {3,4}×{}.

In four-dimensional Euclidean geometry, the cantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a cantellation of a tesseractic honeycomb creating cantellated tesseracts, and new 24-cell and octahedral prism facets at the original vertices.

B<sub>4</sub> polytope

In 4-dimensional geometry, there are 15 uniform 4-polytopes with B4 symmetry. There are two regular forms, the tesseract, and 16-cell with 16 and 8 vertices respectively.

H<sub>4</sub> polytope

In 4-dimensional geometry, there are 15 uniform polytopes with H4 symmetry. Two of these, the 120-cell and 600-cell, are regular.

In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell.

References

    Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
    Regular polygon Triangle Square p-gon Hexagon Pentagon
    Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
    Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
    Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
    Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
    Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
    Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
    Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
    Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
    Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
    Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds