AN/ASG-18

Last updated

The Hughes AN/ASG-18 Fire Control System was a prototype airborne fire control radar system for the planned North American XF-108 Rapier interceptor aircraft, and the Lockheed YF-12 for the United States Air Force. It was the US's first Pulse-Doppler radar, giving it look-down/shoot-down capability, and was also the first track while scan radar (could track one target at a time).[ citation needed ] This was paired with an infrared search and track (IRST) system. Range of the radar was estimated at between 200 and 300 miles (322 to 482 km), with reliable detection of bomber-sized targets at 100 miles (160 km). The installation itself was massive, weighing 2,100 lb (953 kg), and taking up most of the nose of the aircraft. The system was to be used with the Hughes AIM-47 Falcon missile, which also had a range of about 100 miles.

While development work was done with the XF-108, the AN/ASG-18 and Falcon missiles were first tested on a highly modified Convair B-58 Hustler bomber. To fit the radar, the nose was lengthened nearly 7 feet (2.13 m), and the infrared sensors were mounted on either side of the forward fuselage. The resulting nose shape led to it being nicknamed "Snoopy". A single missile was housed in a specially built pod underneath the fuselage.

Before the test "Snoopy" could fly, the XF-108 program was cancelled, and the proposed Lockheed YF-12 interceptor was to instead receive the radar/missile system pair. Tests of the system were conducted first in 1960 and until 1963 only on the modified B-58, after which the YF-12 took over until the cancellation of the whole program in 1966. [1]

Related Research Articles

<span class="mw-page-title-main">AIM-54 Phoenix</span> American long range BVR air-to-air missile

The AIM-54 Phoenix is an American radar-guided, long-range air-to-air missile (AAM), carried in clusters of up to six missiles on the Grumman F-14 Tomcat, its only operational launch platform.

<span class="mw-page-title-main">Lockheed F-104 Starfighter</span> 1956 fighter aircraft family by Lockheed

The Lockheed F-104 Starfighter is an American single-engine, supersonic air superiority fighter which was extensively deployed as a fighter-bomber during the Cold War. Created as a day fighter by Lockheed as one of the "Century Series" of fighter aircraft for the United States Air Force (USAF), it was developed into an all-weather multirole aircraft in the early 1960s and produced by several other nations, seeing widespread service outside the United States.

<span class="mw-page-title-main">Convair F-106 Delta Dart</span> US Air Force all-weather interceptor aircraft

The Convair F-106 Delta Dart was an all-weather interceptor aircraft designed and produced by the American aircraft manufacturer Convair.

<span class="mw-page-title-main">McDonnell F-101 Voodoo</span> Family of 1950s jet fighter aircraft

The McDonnell F-101 Voodoo is a supersonic jet fighter designed and produced by the American McDonnell Aircraft Corporation.

<span class="mw-page-title-main">Republic XF-91 Thunderceptor</span> Experimental interceptor aircraft

The Republic XF-91 Thunderceptor is a mixed-propulsion prototype interceptor aircraft, developed by Republic Aviation. The aircraft would use a jet engine for most flight, and a cluster of four small rocket engines for added thrust during climb and interception. The design was largely obsolete by the time it was completed due to the rapidly increasing performance of contemporary jet engines, and only two prototypes were built. One of these was the first American fighter to exceed Mach 1 in level flight.

<span class="mw-page-title-main">Convair F-102 Delta Dagger</span> Cold War interceptor of the US Air Force

The Convair F-102 Delta Dagger was an interceptor aircraft designed and produced by the American aircraft manufacturer Convair. A member of the Century Series, the F-102 was the first operational supersonic interceptor and delta-wing fighter operated by the United States Air Force (USAF).

<span class="mw-page-title-main">Lockheed F-94 Starfire</span> Series of all-weather interceptor aircraft

The Lockheed F-94 Starfire was a first-generation jet powered all-weather day/night interceptor aircraft designed and produced by Lockheed Corporation. It was the first operational United States Air Force (USAF) fighter equipped with an afterburner as well as being the first jet-powered all-weather fighter to enter combat during the Korean War.

<span class="mw-page-title-main">Northrop F-89 Scorpion</span> An American jet-powered all-weather interceptor aircraft

The Northrop F-89 Scorpion is an all-weather, twin-engined interceptor aircraft designed and produced by the American aircraft manufacturer Northrop Corporation. It was the first jet-powered aircraft to be designed for the Interceptor role from the outset to enter service, as well as the first combat aircraft to be armed with air-to-air nuclear weapons in the form of the unguided Genie rocket. The name Scorpion came from the aircraft's elevated tail unit and high-mounted horizontal stabilizer, which kept it clear of the engine exhaust.

<span class="mw-page-title-main">Northrop YF-23</span> Prototype fighter aircraft for the US Air Force Advanced Tactical Fighter program

The Northrop/McDonnell Douglas YF-23 is an American single-seat, twin-engine, supersonic stealth fighter aircraft technology demonstrator designed for the United States Air Force (USAF). The design was a finalist in the USAF's Advanced Tactical Fighter (ATF) competition, battling the Lockheed YF-22 for a production contract. Two YF-23 prototypes were built.

<span class="mw-page-title-main">Lockheed YF-12</span> American prototype interceptor aircraft

The Lockheed YF-12 was an American Mach 3+ capable, high-altitude interceptor prototype, developed and manufactured by American aerospace company Lockheed Corporation.

<span class="mw-page-title-main">North American XF-108 Rapier</span> Canceled interceptor aircraft project

The North American XF-108 Rapier was a proposed long-range, high-speed interceptor aircraft designed by North American Aviation intended to defend the United States from supersonic Soviet strategic bombers. The aircraft would have cruised at speeds around Mach 3 with an unrefueled combat radius over 1,000 nautical miles, and was equipped with radar and missiles offering engagement ranges up to 100 miles (160 km) against bomber-sized targets.

<span class="mw-page-title-main">Tupolev Tu-28</span> Soviet interceptor aircraft

The Tupolev Tu-28 was a long-range interceptor aircraft introduced by the Soviet Union in the 1960s. The official designation was Tu-128, but this designation was less commonly used in the West. It was the largest and heaviest fighter ever in service.

<span class="mw-page-title-main">Republic XF-103</span> Cancelled American military plane project of the 1940s-1950s

The Republic XF-103 was an American project to develop a powerful missile-armed interceptor aircraft capable of destroying Soviet bombers while flying at speeds as high as Mach 3. Despite a prolonged development, it never progressed past the mockup stage.

<span class="mw-page-title-main">Douglas F6D Missileer</span> Proposed US Navy fighter jet

The Douglas F6D Missileer was a proposed carrier-based fleet defense fighter designed by Douglas Aircraft Company in response to a 1959 United States Navy requirement. It was designed to be able to loiter for extended periods at a relatively long distance from the Navy's aircraft carriers, engaging hostile aircraft 100 miles (160 km) away with its powerful radar and long-range missiles. Since the enemy would be fired on long before they reached visual range, the aircraft had little dogfighting capability and was strictly subsonic. When doubts were expressed about the Missileer's ability to defend itself after firing its missiles, the value of the project was questioned, leading to its cancellation. Some of the Missileer's systems, primarily the engines, radar, and missiles, continued development in spite of the cancellation, eventually emerging on the ill-fated General Dynamics–Grumman F-111B and successful Grumman F-14 Tomcat years later.

<span class="mw-page-title-main">AIM-47 Falcon</span> American high-performance air-to-air missile

The Hughes AIM-47 Falcon, originally GAR-9, was a very long-range high-performance air-to-air missile that shared the basic design of the earlier AIM-4 Falcon. It was developed in 1958 along with the new Hughes AN/ASG-18 radar fire-control system intended to arm the Mach 3 XF-108 Rapier interceptor aircraft and, after that jet's cancellation, the YF-12A. It was never used operationally, but was a direct predecessor of the AIM-54 Phoenix used on the Grumman F-14 Tomcat.

<span class="mw-page-title-main">AIM-4 Falcon</span> American air-to-air missile

The Hughes AIM-4 Falcon was the first operational guided air-to-air missile of the United States Air Force. Development began in 1946; the weapon was first tested in 1949. The missile entered service with the USAF in 1956.

<span class="mw-page-title-main">AN/AWG-9</span> X band pulse-Doppler military aircraft radar

The AN/AWG-9 and AN/APG-71 radars are all-weather, multi-mode X band pulse-Doppler radar systems used in the F-14 Tomcat, and also tested on TA-3B. It is a long-range air-to-air system capable of guiding several AIM-54 Phoenix or AIM-120 AMRAAM missiles simultaneously, using its track while scan mode. The AWG-9 utilizes an analog computer while the APG-71 is an upgraded variant utilizing a digital computer. Both the AWG-9 and APG-71 were designed and manufactured by Hughes Aircraft Company's Radar Systems Group in Los Angeles; contractor support was later assumed by Raytheon. The AWG-9 was originally created for the canceled Navy F-111B program.

A radar system has look-down/shoot-down capability if it can detect, track and guide a weapon to an air target that is silhouetted against the ground.

WS-201A, informally known as the 1954 Interceptor, was a United States Air Force project to develop a dedicated interceptor aircraft that would enter service in 1954. Several aircraft were developed as part of the project, leading to the F-102 Delta Dagger, F-106 Delta Dart, Republic XF-103 and, indirectly, the F-101B Voodoo and F-104 Starfighter. The electronics and weapons developed for the program would become common on US designs, including the AIM-4 Falcon missile and a variety of Hughes Aircraft–supplied radar and fire control systems. The project also led, eventually, to the upgrading of the SAGE battle control computers to directly control the interceptors for much of their flight. Although greatly delayed, the resulting systems operated for approximately 20 years, into the 1980s.

References