AN/FPS-23

Last updated
AN/FPS-23
Mid-Canada Line with dogsled.jpg
AN/FPS-23 radar (on tower)
Country of originUnited States
ManufacturerMotorola
Type early warning radar
Frequency475 - 525 MHz (UHF)
Range50 nautical miles (93 km)
Diameter20 by 6 feet (6.1 by 1.8 m)
Power1 kW
Other NamesFluttar, Type "F"

The Motorola AN/FPS-23 was a short-range early warning radar deployed on the Distant Early Warning Line (DEW Line). It was used as a "gap filler", looking for aircraft attempting to sneak by the DEW line by flying between the main AN/FPS-19 stations at low altitude. It could detect aircraft flying at 200 feet over land or 50 feet over water. [1] The system was known as Fluttar (flutter radar) during its development at the Lincoln Laboratory, and this name was widely used for the production units as well. It was also sometimes known as "Type F". The system went into operation in 1957.

Contents

A major design goal of the FPS-23 was to use the Doppler effect to filter out low-speed objects. Migrating birds flying by the similar Mid-Canada Line (MCL) stations had rendered that system useless during spring and fall. FPS-23 proved to be largely free of this problem, but instead was constantly triggered by light aircraft flying anywhere near the stations. As these were used for communications and crew rotations, the FPS-23 system ultimately proved to be as ineffective as the MCL and the system was shut down in 1963.

Classification of radar systems

Under the Joint Electronics Type Designation System (JETDS), all U.S. military radar and tracking systems are assigned a unique identifying alphanumeric designation. The letters “AN” (for Army-Navy) are placed ahead of a three-letter code. [2]

Thus, the AN/FPS-23 represents the 23rd design of an Army-Navy “Fixed, Radar, Search” electronic device. [2] [3]

MCL

In the early 1950s, Canada undertook the development of a pioneering radar system as part of the Mid-Canada Line (MCL). This system was based on continuous wave radars that broadcast a signal between separate transmitter and receiver stations. When an aircraft passed through the space between the stations, some of the signal was reflected off the aircraft and back to the receiver. This produces a heterodyne effect that is easily detectable using simple electronics. [4] Today, this style of operation is known as a forward scatter bistatic radar. [5]

Because the beam was not steered, unlike a conventional scanning radar, the antennas did not move and the physical design was greatly simplified. Additionally, as the signal was continuous, not pulsed, the transmitter was simpler and cheaper. The original idea had been to mount the systems on telephone poles and overhead power line towers covering relatively short distances, but the need to build thousands of such systems led to this idea being abandoned. The telephone poles were replaced with tall towers, the distance between them increased from a few miles to about 90 kilometres (56 mi). A string of 90 stations was constructed across Canada. [4]

Unlike a pulse radar where the signal from the station travels out and back, in a forward scatter radar like the MCL, it travels an almost straight line from the transmitter to receiver. For this reason, the forward scatter signal is subject only to one inverse square law reduction in power, compared to the normal radar equation where power drops with the fourth root of range. Thus with small targets and weak returns, a pulse radar will only see them near to the station, whereas a forward scatter system will see them over a much greater area. [4]

Originally this was seen as a major advantage of the concept, allowing it to cover long ranges using much less power. But when the first experimental versions of the MCL stations were set up, a problem was immediately noticed. Birds, normally only seen as radar angels at short range, if at all, could now be seen at long distances from the station. During migration, the system was completely swamped with returns that rendered it essentially useless. [4]

Gap filler

The same basic forward-scatter concept was perfectly suited to fill the gaps between the DEW line stations. Because the radars were very simple, they could be run unattended, forwarding data to the main stations. Desiring better low-altitude coverage, the new system would be spaced about 25 miles (40 km) apart, so a string of three towers would be built between the main stations. [4]

But some solution would be needed for the bird problem. The first attempt was made by the Air Force Cambridge Research Laboratory, who surmised that using lower frequencies in the VHF range might mitigate the problem due to the lower Rayleigh scattering cross-section as the wavelength would be much greater than a bird. Tests showed that the large birds seen in the arctic made perfectly good reflectors even at these frequencies. [6]

Fluttar

Development of another solution began at the MIT-backed Lincoln Laboratory. Although similar to the MCL in layout, it worked along different principles. Instead of the signal being scattered along the line between the two stations, the antennas were aimed about 15 degrees "forward" of the line between the two stations. When an aircraft entered this area, it would scatter back to the receiver as before, but in this case the aircraft's motion would shift the frequency of the signal. This effect had first been noticed in television signals when aircraft flew overhead, which is where it gained the name "flutter" for the way the image shifted back and forth on the screen. [4]

Because the system received a signal that was not the original frequency, by comparing the original to the received signal, the Doppler shift could be measured to reveal the speed of the target, which allowed it to filter out any slow-moving targets like birds. [7] The system was set to filter out anything under 125 miles per hour (201 km/h). [1] Another advantage of Fluttar over MCL was that by using multiple Doppler filters in the receiver, the approximate velocity and direction (north or south) could be determined.

The only downside to this approach was that it did not rely on the forward scattering of the signal, so it did not take advantage of the very large effective signals available to the MCL system, which can be orders of magnitude larger than the backscatter used in traditional radars. [4] As a consequence, the Fluttar system would have to be much larger and more powerful to provide the same range performance. [7]

AN/FPS-23

Fluttar was an inexpensive system compared to the main DEW radars. It used a 1 kilowatt, continuous wave, klystron amplifier as a source, and as it was not pulsed, the high-voltage circuitry was much simpler. It could operate from 475 to 525  MHz. Towers were separated from 40 to 70 miles (64–113 km) and were 100 to 400 feet (30–122 m) tall, depending on local terrain. [1] The main DEW stations were normally about 100 miles (160 km) apart, so typically the AN/FPT-4 transmitter was placed in the middle, with the AN/FPR-2 receivers at the stations on either side. [8]

The AN/FPS-23 stations became active in 1957, but soon discovered problems of its own. Annoyingly, although birds flying between the stations were indeed filtered out, it turned out that birds liked to congregate in warm locations, like the Diesel generators at the stations. The signal was so strong that it overwhelmed the filters. [9]

A more annoying problem turned out to be the aircraft that flew from station to station for maintenance. The DEW line was designed to detect a Soviet attack, whose occurrence would likely be a one-time event if it occurred at all. In the case of the gap-filler stations, where the detection only took place during the brief period while the aircraft transited the line between the stations, the signal might be present only for a few minutes over a period of months or years. [9]

To ensure such fleeting signals were not missed by the operators, the Fluttar system used "alarm gates" that triggered when a signal of a particular type was seen. These stayed on until reset by the operators. The problem occurred when the small aircraft would fly from station to station, and during their progress would invariably trigger almost all of the gates at one point or another. This caused alarms to ring out throughout the station, which had to be turned off or ignored, rendering the system ineffective. [9]

It was declared obsolete in 1963, and the intermediate stations were closed. [8]

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a radiolocation system that uses radio waves to determine the distance (ranging), angle (azimuth), and radial velocity of objects relative to the site. It is used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain. A radar system consists of a transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna, a receiving antenna and a receiver and processor to determine properties of the objects. Radio waves from the transmitter reflect off the objects and return to the receiver, giving information about the objects' locations and speeds.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">Multistatic radar</span>

A multistatic radar system contains multiple spatially diverse monostatic radar or bistatic radar components with a shared area of coverage. An important distinction of systems based on these individual radar geometries is the added requirement for some level of data fusion to take place between component parts. The spatial diversity afforded by multistatic systems allows different aspects of a target to be viewed simultaneously. The potential for information gain can give rise to a number of advantages over conventional systems.

<span class="mw-page-title-main">Chain Home</span> Radar defence system in Britain in World War II

Chain Home, or CH for short, was the codename for the ring of coastal early warning radar stations built by the Royal Air Force (RAF) before and during the Second World War to detect and track aircraft. Initially known as RDF, and given the official name Air Ministry Experimental Station Type 1 in 1940, the radar units were also known as Chain Home for most of their life. Chain Home was the first early warning radar network in the world and the first military radar system to reach operational status. Its effect on the war made it one of the most powerful systems of what became known as the "Wizard War".

<span class="mw-page-title-main">Distant Early Warning Line</span> Former system of radar stations in the northern Arctic region of Canada

The Distant Early Warning Line, also known as the DEW Line or Early Warning Line, was a system of radar stations in the northern Arctic region of Canada, with additional stations along the north coast and Aleutian Islands of Alaska, in addition to the Faroe Islands, Greenland, and Iceland. It was set up to detect incoming bombers of the Soviet Union during the Cold War, and provide early warning of any sea-and-land invasion.

<span class="mw-page-title-main">Mid-Canada Line</span> Canadian radar defence line

The Mid-Canada Line (MCL), also known as the McGill Fence, was a line of radar stations running east–west across the middle of Canada, used to provide early warning of a Soviet bomber attack on North America. It was built to supplement the Pinetree Line, which was located farther south. The majority of Mid-Canada Line stations were used only briefly from the late 1950s to the mid-1960s, as the attack threat changed from bombers to ICBMs. As the MCL was closed down, the early warning role passed almost entirely to the newer and more capable DEW Line farther north.

<span class="mw-page-title-main">History of radar</span>

The history of radar started with experiments by Heinrich Hertz in the late 19th century that showed that radio waves were reflected by metallic objects. This possibility was suggested in James Clerk Maxwell's seminal work on electromagnetism. However, it was not until the early 20th century that systems able to use these principles were becoming widely available, and it was German inventor Christian Hülsmeyer who first used them to build a simple ship detection device intended to help avoid collisions in fog. True radar, such as the British Chain Home early warning system provided directional information to objects over short ranges, were developed over the next two decades.

<span class="mw-page-title-main">Kolchuga passive sensor</span> Soviet radar detector

The Kolchuga passive sensor is an electronic-warfare support measures (ESM) system developed in the Soviet Union and manufactured in Ukraine. Its detection range is limited by line-of-sight but may be up to 800 km (500 mi) for very high altitude, very powerful emitters. Frequently referred to as Kolchuga Radar, the system is not really a radar, but an ESM system comprising three or four receivers, deployed tens of kilometres apart, which detect and track aircraft by triangulation and multilateration of their RF emissions.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

<span class="mw-page-title-main">Continuous-wave radar</span> Type of radar where a known stable frequency continuous wave radio energy is transmitted

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Individual objects can be detected using the Doppler effect, which causes the received signal to have a different frequency from the transmitted signal, allowing it to be detected by filtering out the transmitted frequency.

Passive radar is a class of radar systems that detect and track objects by processing reflections from non-cooperative sources of illumination in the environment, such as commercial broadcast and communications signals. It is a specific case of bistatic radarpassive bistatic radar (PBR) – which is a broad type also including the exploitation of cooperative and non-cooperative radar transmitters.

<span class="mw-page-title-main">AN/FPS-117</span> L-band AESA 3D air search radar

The AN/FPS-117 is an L-band active electronically scanned array (AESA) 3-dimensional air search radar first produced by GE Aerospace in 1980 and now part of Lockheed Martin. The system offers instrumented detection at ranges on the order of 200 to 250 nautical miles and has a wide variety of interference and clutter rejection systems.

<span class="mw-page-title-main">Bistatic radar</span> Radio wave detection and transmission system defined by its separation

Bistatic radar is a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a conventional radar in which the transmitter and receiver are co-located is called a monostatic radar. A system containing multiple spatially diverse monostatic or bistatic radar components with a shared area of coverage is called multistatic radar. Many long-range air-to-air and surface-to-air missile systems use semi-active radar homing, which is a form of bistatic radar.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

<span class="mw-page-title-main">RCA AN/FPS-16 Instrumentation Radar</span> Ground radar

The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar (SOTR), used extensively by the NASA crewed space program, the U.S. Air Force and the U.S. Army. The accuracy of Radar Set AN/FPS-16 is such that the position data obtained from point-source targets has azimuth and elevation angular errors of less than 0.1 milliradian and range errors of less than 5 yards (5 m) with a signal-to-noise ratio of 20 decibels or greater.

Radar engineering details are technical details pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

Demarcation Bay DEW Line Station is an abandoned United States Air Force Distant Early Warning Line Radar station located on the north coast of Alaska, United States. The site is situated on Nuvagapak Point, about 25 miles (40 km) northeast of the topographical Demarcation Bay and 35 miles (56 km) from the border with Canada. Situated 349 miles (562 km) east of Point Barrow, it was the most remote DEW site in Alaska. Demarcation Bay DEW Line Station was closed in 1964, and is not open for public use.

Klein Heidelberg (KH) was a passive radar system deployed by the Germans during World War II. It used the signals broadcast by the British Chain Home system as its transmitter, and a series of six stations along the western coast of continental Europe as passive receivers. In modern terminology, the system was a bistatic radar. Because the system sent no signals of its own, the allies were unaware of its presence, and did not learn of the system until well after the D-Day invasion. The system is referred to as Klein Heidelberg Parasit in some references.

<span class="mw-page-title-main">Radar angels</span> Radar effect

Radar angels are an effect seen on radar displays when there is a periodic structure in the view of the radar that is roughly the same length as the signal's wavelength. The angel appears to be a physically huge object on the display, often miles across, that can obscure real targets. These were first noticed in the 1940s and were a topic of considerable study in the 1950s. The underlying mechanism is due to Bragg's law.

References

Citations

  1. 1 2 3 Ray 1965, p. 24.
  2. 1 2 Avionics Department (2013). "Missile and Electronic Equipment Designations". Electronic Warfare and Radar Systems Engineering Handbook (PDF) (4 ed.). Point Mugu, California: Naval Air Warfare Center Weapons Division. pp. 2–8.1.
  3. Winkler, David F. (1997). "Radar Systems Classification Methods". Searching the Skies: The Legacy of the United States Cold War Defense Radar Program (PDF). Langley AFB, Virginia: United States Air Force Headquarters Air Combat Command. p. 73. LCCN   97020912.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. 1 2 3 4 5 6 7 Skolnik 2007, p. 37.
  5. Willis, Nicholas (2005). Bistatic Radar. SciTech Publishing. p. 218. ISBN   9781891121456.
  6. Skolnik 2007, p. 38.
  7. 1 2 Skolnik 2007, p. 39.
  8. 1 2 Wolff.
  9. 1 2 3 Skolnik 2007, p. 45.

Bibliography