Abstract analytic number theory

Last updated

Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Analytic number theory Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

Contents

Arithmetic semigroups

The fundamental notion involved is that of an arithmetic semigroup, which is a commutative monoid G satisfying the following properties:

In abstract algebra, a branch of mathematics, a monoid is an algebraic structure with a single associative binary operation and an identity element.

In mathematics, a set A is a subset of a set B, or equivalently B is a superset of A, if A is "contained" inside B, that is, all elements of A are also elements of B. A and B may coincide. The relationship of one set being a subset of another is called inclusion or sometimes containment. A is a subset of B may also be expressed as B includes A; or A is included in B.

where the pi are distinct elements of P, the αi are positive integers, r may depend on a, and two factorisations are considered the same if they differ only by the order of the factors indicated. The elements of P are called the primes of G.
Real number Number representing a continuous quantity

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as 2. Included within the irrationals are the transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more.

Additive number systems

An additive number system is an arithmetic semigroup in which the underlying monoid G is free abelian. The norm function may be written additively. [1]

If the norm is integer-valued, we associate counting functions a(n) and p(n) with G where p counts the number of elements of P of norm n, and a counts the number of elements of G of norm n. We let A(x) and P(x) be the corresponding formal power series. We have the fundamental identity [2]

In mathematics, a formal power series is a generalization of a polynomial, where the number of terms is allowed to be infinite; this implies giving up the possibility of replacing the variable in the polynomial with an arbitrary number. Thus a formal power series differs from a polynomial in that it may have infinitely many terms, and differs from a power series, whose variables can take on numerical values. One way to view a formal power series is as an infinite ordered sequence of numbers. In this case, the powers of the variable are used only to indicate the order of the coefficients, so that the coefficient of is the fifth term in the sequence. In combinatorics, formal power series provide representations of numerical sequences and of multisets, and for instance allow concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. More generally, formal power series can include series with any finite number of variables, and with coefficients in an arbitrary ring. Formal power series can be created from Taylor polynomials using formal moduli.

which formally encodes the unique expression of each element of G as a product of elements of P. The radius of convergence of G is the radius of convergence of the power series A(x). [3]

The fundamental identity has the alternative form [4]

Examples

Methods and techniques

The use of arithmetic functions and zeta functions is extensive. The idea is to extend the various arguments and techniques of arithmetic functions and zeta functions in classical analytic number theory to the context of an arbitrary arithmetic semigroup which may satisfy one or more additional axioms. Such a typical axiom is the following, usually called "Axiom A" in the literature:

For any arithmetic semigroup which satisfies Axiom A, we have the following abstract prime number theorem: [6]

where πG(x) = total number of elements p in P of norm |p| ≤ x.

Arithmetical formation

The notion of arithmetical formation provides a generalisation of the ideal class group in algebraic number theory and allows for abstract asymptotic distribution results under constraints. In the case of number fields, for example, this is Chebotarev's density theorem. An arithmetical formation is an arithmetic semigroup G with an equivalence relation ≡ such that the quotient G/≡ is a finite abelian group A. This quotient is the class group of the formation and the equivalence classes are generalised arithmetic progressions or generalised ideal classes. If χ is a character of A then we can define a Dirichlet series

which provides a notion of zeta function for arithmetical semigroup. [7]

See also

Related Research Articles

In number theory, two integers a and b are said to be relatively prime, mutually prime, or coprime if the only positive integer (factor) that divides both of them is 1. Consequently, any prime number that divides one does not divide the other. This is equivalent to their greatest common divisor (gcd) being 1.

Elliptic curve an algebraic curve of genus 1 equipped with a basepoint

In mathematics, an elliptic curve is a plane algebraic curve defined by an equation of the form

In mathematics, more specifically in ring theory, a Euclidean domain is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of the integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them. Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

Field (mathematics) Algebraic structure with two binary operations

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined, and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.

Ring (mathematics) Algebraic structure with two binary operations

In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

In mathematics, more specifically in the area of abstract algebra known as ring theory, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals, which means there is no infinite ascending sequence of left ideals; that is, given any chain of left ideals,

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

Algebraic number theory major branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In the mathematical subject of universal algebra, a variety of algebras is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.

In algebraic number theory, the narrow class group of a number field K is a refinement of the class group of K that takes into account some information about embeddings of K into the field of real numbers.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In algebraic number theory, the prime ideal theorem is the number field generalization of the prime number theorem. It provides an asymptotic formula for counting the number of prime ideals of a number field K, with norm at most X.

In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.

In mathematics, an algebraic number fieldF is a finite degree field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.

In mathematics, the arithmetic zeta function is a zeta function associated with a scheme of finite type over integers. The arithmetic zeta function generalizes the Riemann zeta function and Dedekind zeta function to higher dimensions. The arithmetic zeta function is one of the most-fundamental objects of number theory.

References

  1. Burris (2001) p.20
  2. Burris (2001) p.26
  3. Burris (2001) p.31
  4. Burris (2001) p.34
  5. Knopfmacher (1990) p.75
  6. Knopfmacher (1990) p.154
  7. Knopfmacher (1990) pp.250–264