Birkhoff's theorem (relativity)

Last updated
Front page of Arkiv for Matematik, Astronomi och Fysik where Jebsen's work was published Jebsen-Arkiv 1921.jpg
Front page of Arkiv för Matematik, Astronomi och Fysik where Jebsen's work was published

In general relativity, Birkhoff's theorem states that any spherically symmetric solution of the vacuum field equations must be static and asymptotically flat. This means that the exterior solution (i.e. the spacetime outside of a spherical, nonrotating, gravitating body) must be given by the Schwarzschild metric. The converse of the theorem is true and is called Israel's theorem. [1] [2] The converse is not true in Newtonian gravity. [3] [4]

Contents

The theorem was proven in 1923 by George David Birkhoff (author of another famous Birkhoff theorem , the pointwise ergodic theorem which lies at the foundation of ergodic theory). In 2005, Nils Voje Johansen, Finn Ravndal, Stanley Deser [ citation needed ] stated that the theorem was allegedly published two years earlier by a little-known Norwegian physicist, Jørg Tofte Jebsen. [5] [6] [ non-primary source needed ][ original research? ]

Intuitive rationale

The intuitive idea of Birkhoff's theorem is that a spherically symmetric gravitational field should be produced by some massive object at the origin; if there were another concentration of mass–energy somewhere else, this would disturb the spherical symmetry, so we can expect the solution to represent an isolated object. That is, the field should vanish at large distances, which is (partly) what we mean by saying the solution is asymptotically flat. Thus, this part of the theorem is just what we would expect from the fact that general relativity reduces to Newtonian gravitation in the Newtonian limit.

Implications

The conclusion that the exterior field must also be stationary is more surprising, and has an interesting consequence. Suppose we have a spherically symmetric star of fixed mass which is experiencing spherical pulsations. Then Birkhoff's theorem says that the exterior geometry must be Schwarzschild; the only effect of the pulsation is to change the location of the stellar surface. This means that a spherically pulsating star cannot emit gravitational waves, which requires at least a mass quadrupole structure. [7]

Generalizations

Birkhoff's theorem can be generalized: any spherically symmetric and asymptotically flat solution of the Einstein/Maxwell field equations, without , must be static, so the exterior geometry of a spherically symmetric charged star must be given by the Reissner–Nordström electrovacuum. In the Einstein-Maxwell theory, there exist spherically symmetric but not asymptotically flat solutions, such as the Bertotti-Robinson universe.

See also

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

The following is a timeline of gravitational physics and general relativity.

Timeline of black hole physics

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term.

An asymptotically flat spacetime is a Lorentzian manifold in which, roughly speaking, the curvature vanishes at large distances from some region, so that at large distances, the geometry becomes indistinguishable from that of Minkowski spacetime.

General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

<span class="mw-page-title-main">Jørg Tofte Jebsen</span> Norwegian physicist

Jørg Tofte Jebsen was a physicist from Norway, where he was the first to work on Einstein's general theory of relativity. In this connection he became known after his early death for what many now call the Jebsen-Birkhoff theorem for the metric tensor outside a general, spherical mass distribution.

In metric theories of gravitation, particularly general relativity, a static spherically symmetric perfect fluid solution is a spacetime equipped with suitable tensor fields which models a static round ball of a fluid with isotropic pressure.

The concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in general relativity may not even be defined.

The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modeled by general relativity. The equation is

Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial slices are flat. There is no coordinate singularity at the Schwarzschild radius. The outgoing ones are simply the time reverse of ingoing coordinates.

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

The following outline is provided as an overview of and topical guide to black holes:

<span class="mw-page-title-main">Jürgen Ehlers</span> German physicist

Jürgen Ehlers was a German physicist who contributed to the understanding of Albert Einstein's theory of general relativity. From graduate and postgraduate work in Pascual Jordan's relativity research group at Hamburg University, he held various posts as a lecturer and, later, as a professor before joining the Max Planck Institute for Astrophysics in Munich as a director. In 1995, he became the founding director of the newly created Max Planck Institute for Gravitational Physics in Potsdam, Germany.

In Einstein's theory of general relativity, the interior Schwarzschild metric is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.

References

  1. Israel, Werner (25 December 1967). "Event Horizons in Static Vacuum Space-Times". Physical Review. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776 via American Physical Society.
  2. Straumann, Norbert (2013). General Relativity. Graduate Texts in Physics (2nd ed.). Springer Graduate texts in Physics. p. 429. Bibcode:2013gere.book.....S. doi:10.1007/978-94-007-5410-2. ISBN   978-94-007-5409-6.
  3. Padmanabhan, Thanu (1996). Cosmology and Astrophysics through problems. Cambridge University Press. pp. 8, 150. ISBN   0-521-46783-7.
  4. Padmanabhan, Thanu (2015). "5". Sleeping beauties in theoretical physics: 26 Surprising insights. Lecture Notes in Physics. Vol. 895. Springer Lecture notes in Physics. pp. 57–63. Bibcode:2015sbtp.book.....P. doi:10.1007/978-3-319-13443-7. ISBN   978-3-319-13442-0. ISSN   0075-8450.
  5. J.T. Jebsen, Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum, Arkiv för matematik, astronomi och fysik, 15 (18), 1 - 9 (1921).
  6. J.T. Jebsen, On the general symmetric solutions of Einstein's gravitational equations in vacuo, General Relativity and Cosmology 37 (12), 2253 - 2259 (2005).
  7. Penrose, Roger (1965-01-18). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (3): 57–59. Bibcode:1965PhRvL..14...57P. doi:10.1103/PhysRevLett.14.57. S2CID   116755736.