Carrier's constraint

Last updated
Common leopard gecko Eublepharis macularius 2009 G6.jpg
Common leopard gecko

Carrier's constraint is the observation that air-breathing vertebrates with two lungs that flex their bodies sideways during locomotion find it difficult to move and breathe at the same time, because the sideways flexing expands one lung and compresses the other, shunting stale air from lung to lung instead of expelling it completely to make room for fresh air. [1]

Contents

It was named by English paleontologist Richard Owen for David R. Carrier, who wrote his observations on the problem in 1987. [2] [3] [4]

Consequences

Most lizards move in short bursts, with long pauses for breath.[ citation needed ]

Around the Late Triassic period, animals with Carrier's constraint were preyed on by bipedal species that evolved a more efficient stride.[ citation needed ]

Solutions

Workarounds

Most snakes have only one lung, so Carrier's constraint does not apply.

Monitor lizards increase their stamina by using bones and muscles in the throat and floor of the mouth to "gulp" air via gular pumping. [5]

Some other lizards, mainly agamids, use bipedal locomotion for running and avoid sideways flexing. Bipedality in modern lizards is rare, but it is an effective way to run without pausing to breathe, and is advantageous for catching active prey or evading predators.

Crocodilians use a "high walk" with a more erect limb posture that minimizes sideways flexing to cross long distances. However, as they evolved from upright walkers with limited bipedality, this may simply be a remnant of past behavior rather than a specific adaptation to overcome this difficulty. Todd J. Uriona of the University of Utah hypothesized that costal ventilation may have aided the upright posture in overcoming the constraint. [6]

Avoiding the constraint

Birds have erect limbs and rigid bodies, and therefore do not flex sideways when moving. In addition many of them have a mechanism which pumps both lungs simultaneously when the birds rock their hips.[ citation needed ]

Most mammals have erect limbs and flexible bodies, which makes their bodies flex vertically when moving quickly. This aids breathing, as it expands or compresses both lungs simultaneously.[ citation needed ]

Contrary evidence

Contrary to the above model, breathing is maintained in lizards during movement, even above their aerobic scope, and arterial blood remains well oxygenated. [7]

Paleontologist Richard Cowen wrote a limerick to explain and celebrate Carrier's rule: [3]

The reptilian idea of fun
Is to bask all day in the sun.
A physiological barrier,
Discovered by Carrier,
Says they can't breathe, if they run.

See also

Related Research Articles

<span class="mw-page-title-main">Bipedalism</span> Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where a tetrapod moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.

<span class="mw-page-title-main">Reptile</span> Group of animals including lepidosaurs, testudines, and archosaurs

Reptiles, as commonly defined, are a group of tetrapods with an ectothermic ('cold-blooded') metabolism and amniotic development. Living reptiles comprise four orders: Testudines (turtles), Crocodilia (crocodilians), Squamata, and Rhynchocephalia. As of May 2023, about 12,000 living species of reptiles are listed in the Reptile Database. The study of the traditional reptile orders, customarily in combination with the study of modern amphibians, is called herpetology.

<span class="mw-page-title-main">Gait</span> Pattern of movement of the limbs of animals

Gait is the pattern of movement of the limbs of animals, including humans, during locomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and energetic efficiency. Different animal species may use different gaits due to differences in anatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it.

<span class="mw-page-title-main">Tetrapod</span> Superclass of the first four-limbed vertebrates and their descendants

A tetrapod is any four-limbed vertebrate animal of the superclass Tetrapoda. Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids and synapsids. Some tetrapods such as snakes, legless lizards, and caecilians had evolved to become limbless via mutations of the Hox gene, although some do still have a pair of vestigial spurs that are remnants of the hindlimbs.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment.

<span class="mw-page-title-main">Archosaur</span> Group of diapsids broadly classified as reptiles

Archosauria is a clade of diapsid sauropsid tetrapods, with birds and crocodilians being the only living representatives. Archosaurs are broadly classified as reptiles, in the cladistic sense of the term, which includes birds. Extinct archosaurs include non-avian dinosaurs, pterosaurs and extinct relatives of crocodilians. Modern paleontologists define Archosauria as a crown group that includes the most recent common ancestor of living birds and crocodilians, and all of its descendants. The base of Archosauria splits into two clades: Pseudosuchia, which includes crocodilians and their extinct relatives; and Avemetatarsalia, which includes birds and their extinct relatives.

Buccal pumping is "breathing with one's cheeks": a method of ventilation used in respiration in which the animal moves the floor of its mouth in a rhythmic manner that is externally apparent. It is the sole means of inflating the lungs in amphibians.

<i>Lystrosaurus</i> Genus of Late Permian and Early Triassic dicynodont therapsids

Lystrosaurus is an extinct genus of herbivorous dicynodont therapsids from the late Permian and Early Triassic epochs. It lived in what is now Antarctica, India, China, Mongolia, European Russia and South Africa. Four to six species are currently recognized, although from the 1930s to 1970s the number of species was thought to be much higher. They ranged in size from that of a small dog to 8 feet long.

<i>Euparkeria</i> Extinct genus of reptiles

Euparkeria is an extinct genus of archosauriform reptile from the Triassic of South Africa. Euparkeria is close to the ancestry of Archosauria, the reptile group that includes crocodilians, pterosaurs, and dinosaurs.

<span class="mw-page-title-main">Terrestrial locomotion</span> Ability of animals to travel on land

Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises different problems than that in water, with reduced friction being replaced by the increased effects of gravity.

<span class="mw-page-title-main">Amphibious fish</span>

Amphibious fish are fish that are able to leave water for extended periods of time. About 11 distantly related genera of fish are considered amphibious. This suggests that many fish genera independently evolved amphibious traits, a process known as convergent evolution. These fish use a range of terrestrial locomotory modes, such as lateral undulation, tripod-like walking, and jumping. Many of these locomotory modes incorporate multiple combinations of pectoral-, pelvic-, and tail-fin movement.

A facultative biped is an animal that is capable of walking or running on two legs (bipedal), as a response to exceptional circumstances (facultative), while normally walking or running on four limbs or more. In contrast, obligate bipedalism is where walking or running on two legs is the primary method of locomotion. Facultative bipedalism has been observed in several families of lizards and multiple species of primates, including sifakas, capuchin monkeys, baboons, gibbons, gorillas, bonobos and chimpanzees. Different facultatively bipedal species employ different types of bipedalism corresponding to the varying reasons they have for engaging in facultative bipedalism. In primates, bipedalism is often associated with food gathering and transport. In lizards, it has been debated whether bipedal locomotion is an advantage for speed and energy conservation or whether it is governed solely by the mechanics of the acceleration and lizard's center of mass. Facultative bipedalism is often divided into high-speed (lizards) and low-speed (gibbons), but some species cannot be easily categorized into one of these two. Facultative bipedalism has also been observed in cockroaches and some desert rodents.

<i>Poposaurus</i> Extinct genus of Archosaur

Poposaurus is an extinct genus of pseudosuchian archosaur from the Late Triassic of the southwestern United States. It belongs to the clade Poposauroidea, an unusual group of Triassic pseudosuchians that includes sail-backed, beaked, and aquatic forms. Fossils have been found in Wyoming, Utah, Arizona, and Texas. Except for the skull, most parts of the skeleton are known. The type species, P. gracilis, was described and named by Maurice Goldsmith Mehl in 1915. A second species, P. langstoni, was originally the type species of the genus Lythrosuchus. Since it was first described, Poposaurus has been variously classified as a dinosaur, a phytosaur, and a "rauisuchian".

The physiology of dinosaurs has historically been a controversial subject, particularly their thermoregulation. Recently, many new lines of evidence have been brought to bear on dinosaur physiology generally, including not only metabolic systems and thermoregulation, but on respiratory and cardiovascular systems as well.

<span class="mw-page-title-main">Muscles of respiration</span> Muscles involved in breathing

The muscles of respiration are the muscles that contribute to inhalation and exhalation, by aiding in the expansion and contraction of the thoracic cavity. The diaphragm and, to a lesser extent, the intercostal muscles drive respiration during quiet breathing. The elasticity of these muscles is crucial to the health of the respiratory system and to maximize its functional capabilities.

<span class="mw-page-title-main">Nose</span> Organ that smells and facilitates breathing

A nose is a protuberance in vertebrates that houses the nostrils, or nares, which receive and expel air for respiration alongside the mouth. Behind the nose are the olfactory mucosa and the sinuses. Behind the nasal cavity, air next passes through the pharynx, shared with the digestive system, and then into the rest of the respiratory system. In humans, the nose is located centrally on the face and serves as an alternative respiratory passage especially during suckling for infants. The protruding nose that is completely separate from the mouth part is a characteristic found only in therian mammals. It has been theorized that this unique mammalian nose evolved from the anterior part of the upper jaw of the reptilian-like ancestors (synapsids).

A limb is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

<span class="mw-page-title-main">Human skeletal changes due to bipedalism</span> Evoltionary changes to the human skeleton as a consequence of bipedalism

The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.

<span class="mw-page-title-main">Breathing</span> Process of moving air in and out of the lungs

Breathing is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.

<span class="mw-page-title-main">Fish gill</span> Organ that allows fish to breathe underwater

Fish gills are organs that allow fish to breathe underwater. Most fish exchange gases like oxygen and carbon dioxide using gills that are protected under gill covers (operculum) on both sides of the pharynx (throat). Gills are tissues that are like short threads, protein structures called filaments. These filaments have many functions including the transfer of ions and water, as well as the exchange of oxygen, carbon dioxide, acids and ammonia. Each filament contains a capillary network that provides a large surface area for exchanging oxygen and carbon dioxide.

References

  1. Carrier, D.R. (1987). "The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraint". Paleobiology. 13 (3): 326–341. doi:10.1017/s0094837300008903. S2CID   83722453.
  2. Cowen, Richard (1996). "Locomotion and Respiration in Aquatic Air-Breathing Vertebrates". In Jablonski, David; et al. (eds.). Evolutionary Paleobiology. Chicago: University of Chicago Press. p. 337+. ISBN   0-226-38911-1.
  3. 1 2 Cowen, Richard (2003). "Respiration, Metabolism, and Locomotion". Richard Cowen, University of California, Davis. Archived from the original on October 21, 2014. Retrieved October 21, 2014. If the animal is walking, it may be able to breathe between steps, but sprawling vertebrates cannot run and breathe at the same time. I shall call this problem Carrier's Constraint.
  4. Shipman, Pat (January 2008). "Freed to Fly Again". American Scientist . Research Triangle Park: Sigma Xi. 96 (1): 20. doi:10.1511/2008.69.20. Archived from the original on March 4, 2016. Retrieved October 21, 2014. Carrier's constraint is named for David R. Carrier at the University of Utah in Salt Lake City, who observed that the typical sprawling gait of a lizard restricts the animal's ability to breathe while running or walking.
  5. Summers, Adam (2003). "Monitor Marathons". Natural History . 112 (5): 32. Retrieved October 21, 2014.
  6. Uriona, Todd J. (2008). The Function of the Crocodilean Diaphragmaticus. ISBN   9780549977285 . Retrieved October 21, 2014.
  7. Bennett, Albert F. (1994). "Exercise performance of reptiles" (PDF). In Jones, James H.; Cornelius, Charles E.; Marshak, R. R. (eds.). Comparative Vertebrate Exercise Physiology: Phyletic Adaptations. Advances in Veterinary Science and Comparative Medicine. Vol. 38B. New York: Academic Press. pp. 113–138. ISBN   0120392399.