CoKu Tau/4

Last updated
CoKu Tau/4
Observation data
Epoch J2000.0        Equinox J2000.0 (ICRS)
Constellation Taurus
Right ascension 04h 41m 16.809s
Declination +28° 39 59.99
Apparent magnitude  (V)14.9
Distance ~420  ly
(~130  pc)
Other designations
CoKu Tauri/4, CoKu Tau-Aur Star 4, HBC 421, 2MASS J04411681+2840000
Database references
SIMBAD data

CoKu Tau/4 is a pre-main-sequence binary T Tauri star system in the constellation Taurus. The stars are surrounded by a circumbinary disc with a central cavity of radius 10 astronomical units. Before its binary nature was known, the central cavity in the system's disc was thought to have been cleared out by a planet of at least 10 Jupiter masses, a rare example of a so-called "transitional disc". This model was disproven in 2008 when the star was resolved using adaptive optics as a system of two near-equal-mass stars with a projected separation of 8 AU. The central cavity is thus cleared out by the stars, not by the gravitational influence of a planet.

Related Research Articles

T Tauri star Class of young variable star

T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity–temperature relationship obeyed by infant stars of less than 3 solar masses (M) in the pre-main-sequence phase of stellar evolution. It ends when a star of 0.5 M or larger develops a radiative zone, or when a smaller star commences nuclear fusion on the main sequence.

Protoplanetary disk Rotating circumstellar disk of dense gas surrounding a young newly formed star

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

TW Hydrae Star in the constellation Hydra

TW Hydrae is a T Tauri star approximately 196 light-years away in the constellation of Hydra. The star is the closest such star to the Solar System. TW Hydrae is about 80% of the mass of the Sun, but is only about 5-10 million years old. The star appears to be accreting from a face-on protoplanetary disk of dust and gas, which has been resolved in images from the ALMA observatory. TW Hydrae is accompanied by about twenty other low-mass stars with similar ages and spatial motions, comprising the "TW Hydrae association" or TWA, one of the closest regions of recent "fossil" star-formation to the Sun.

Debris disk

A debris disk, or debris disc, is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris disks have been found around both mature and young stars, as well as at least one debris disk in orbit around an evolved neutron star. Younger debris disks can constitute a phase in the formation of a planetary system following the protoplanetary disk phase, when terrestrial planets may finish growing. They can also be produced and maintained as the remnants of collisions between planetesimals, otherwise known as asteroids and comets.

HD 98800, also catalogued as TV Crateris, is a quadruple star system in the constellation of Crater. Parallax measurements made by the Hipparcos spacecraft put it at a distance of about 150 light-years away, but this value is in high error. The system is located within the TW Hydrae association (TWA), and has received the designation TWA 4.

Circumbinary planet

A circumbinary planet is a planet that orbits two stars instead of one. Planets in stable orbits around one of the two stars in a binary are known. New studies showed that there is a strong hint that the planet and stars originate from a single disk.

V4046 Sagittarii is a young binary consisting of two K-type main-sequence stars. The two stars are about 271 light-years away from the Earth. The two stars orbit each other every 2.42 days on a circular orbit.

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

Scott Jay Kenyon is an American astrophysicist. His work has included advances in symbiotic and other types of interacting binary stars, the formation and evolution of stars, and the formation of planetary systems.

99 Herculis is the Flamsteed designation for a binary star system in the northern constellation of Hercules. It has the Bayer designation b Herculis, while 99 Herculis is the Flamsteed designation. This system has an apparent visual magnitude of 5.1, which, according to the Bortle scale, makes it faintly visible to the naked eye from suburban skies. Measurements made with the Hipparcos spacecraft show an annual parallax shift of 0.064″, corresponding to a physical distance of about 51.0 ly (15.6 pc) from the Sun. The system is moving further from the Earth with a heliocentric radial velocity of +1.7 km/s.

HD 106906 b

HD 106906 b is a directly imaged planetary-mass companion and candidate exoplanet orbiting the star HD 106906, in the constellation Crux at about 336 ± 13 light-years (103 ± 4 pc) from Earth. It is estimated to be about eleven times the mass of Jupiter and is located about 738 AU away from its host star. HD 106906 b is rare in astronomy; while its mass estimate is nominally consistent with identifying it as an exoplanet, it appears at a much wider separation from its parent star than thought possible for in-situ formation from a protoplanetary disk.

AC Herculis Star in the constellation Hercules

AC Herculis, is an RV Tauri variable and spectroscopic binary star in the constellation of Hercules. It varies in brightness between apparent magnitudes 6.85 and 9.0.

Circumstellar disc

A circumstellar disc is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place, and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.

LkCa 15 Star system in the constellation Taurus

LkCa 15 is a T Tauri star in the Taurus Molecular Cloud. These types of stars are relatively young pre-main-sequence stars that show irregular variations in brightness. It has a mass that is about 97% of the Sun, an effective temperature of 4370 K, and is slightly cooler than the Sun. Its apparent magnitude is 11.91, meaning it is not visible to the naked eye.

GG Tauri Star in the constellation Taurus

GG Tauri, often abbreviated as GG Tau, is a quadruple or quintuple star system in the constellation Taurus. At a distance of about 450 light years away, it is located within the Taurus-Auriga Star Forming Region. The system comprises two stars orbiting each other in a hierarchical triple system, and another binary star system more distant from the central system.

SX Centauri is a variable star in the constellation Centaurus. An RV Tauri variable, its light curve alternates between deep and shallow minima, varying its apparent magnitude from 9.1 to 12.4. From the period-luminosity relationship, it is estimated to be around 1.6 kpc from Earth. Gaia Data Release 2 gives a parallax of 0.2175 mas, corresponding to distance of about 4,600 pc.

GW Orionis Star in the constellation Orion

GW Orionis is a T Tauri type pre-main sequence hierarchical triple star system. It is associated with the Lambda Orionis star-forming region and has an extended circumtrinary protoplanetary disk.

KH 15D Binary star system in the constellation Monoceros

KH 15D, described as a winking star because of its unusual dips in brightness, is a binary T Tauri star system embedded in a circumbinary disk. It is a member of the young open cluster NGC 2264, located about 2,500 light-years (770 pc) from the Sun in the constellation of Monoceros.

PDS 70 T Tauri-type star in the constellation Centaurus

PDS 70 is a low-mass T Tauri star in the constellation Centaurus. Located approximately 370 light-years from Earth, it has a mass of 0.82 M, and is approximately 10 million years old. The star has a protoplanetary disk containing two nascent exoplanets, named PDS 70b and PDS 70c, which have been directly imaged by the European Southern Observatory's Very Large Telescope. PDS 70b was the first confirmed protoplanet to be directly imaged.

AK Scorpii

AK Scorpii is a Herbig Ae/Be star and spectroscopic binary star about 459 light-years distant in the constellation Scorpius. The star belongs to the nearby Upper Centaurus–Lupus star-forming region and the star is actively accreting material. The binary is surrounded by a circumbinary disk that was imaged with VLT/SPHERE in scattered light and with ALMA.

References