Dependence relation

Last updated

In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.

Let be a set. A (binary) relation between an element of and a subset of is called a dependence relation, written , if it satisfies the following properties:

Given a dependence relation on , a subset of is said to be independent if for all If , then is said to span if for every is said to be a basis of if is independent and spans

Remark. If is a non-empty set with a dependence relation , then always has a basis with respect to Furthermore, any two bases of have the same cardinality.

Examples

See also

This article incorporates material from Dependence relation on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Related Research Articles

<span class="mw-page-title-main">Filter (mathematics)</span> In mathematics, a special subset of a partially ordered set

In mathematics, a filter or order filter is a special subset of a partially ordered set (poset). Filters appear in order and lattice theory, but can also be found in topology, from which they originate. The dual notion of a filter is an order ideal.

<span class="mw-page-title-main">Hypergraph</span> Generalization of graph theory

In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, a subset of a given set is closed under an operation of the larger set if performing that operation on members of the subset always produces a member of that subset. For example, the natural numbers are closed under addition, but not under subtraction: 1 − 2 is not a natural number, although both 1 and 2 are.

In mathematics, and more particularly in set theory, a cover of a set is a family of subsets of whose union is all of . More formally, if is an indexed family of subsets , then is a cover of if . Thus the collection is a cover of if each element of belongs to at least one of the subsets .

<span class="mw-page-title-main">Rank–nullity theorem</span> In linear algebra, relation between 3 dimensions

The rank–nullity theorem is a theorem in linear algebra, which asserts that the dimension of the domain of a linear map is the sum of its rank and its nullity.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

In mathematics, more specifically in functional analysis, a positive linear functional on an ordered vector space is a linear functional on so that for all positive elements that is it holds that

In proof theory, a coherent space is a concept introduced in the semantic study of linear logic.

<span class="mw-page-title-main">Projectively extended real line</span> Real numbers with an added point at infinity

In real analysis, the projectively extended real line, is the extension of the set of the real numbers, , by a point denoted . It is thus the set with the standard arithmetic operations extended where possible, and is sometimes denoted by or The added point is called the point at infinity, because it is considered as a neighbour of both ends of the real line. More precisely, the point at infinity is the limit of every sequence of real numbers whose absolute values are increasing and unbounded.

<span class="mw-page-title-main">Mixing (mathematics)</span>

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: mixing paint, mixing drinks, industrial mixing, etc.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

<span class="mw-page-title-main">Restriction (mathematics)</span> Function with a smaller domain

In mathematics, the restriction of a function is a new function, denoted or obtained by choosing a smaller domain for the original function The function is then said to extend

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

In abstract algebra, a cellular algebra is a finite-dimensional associative algebra A with a distinguished cellular basis which is particularly well-adapted to studying the representation theory of A.

For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

The concept of angles between lines in the plane and between pairs of two lines, two planes or a line and a plane in space can be generalized to arbitrary dimension. This generalization was first discussed by Jordan. For any pair of flats in a Euclidean space of arbitrary dimension one can define a set of mutual angles which are invariant under isometric transformation of the Euclidean space. If the flats do not intersect, their shortest distance is one more invariant. These angles are called canonical or principal. The concept of angles can be generalized to pairs of flats in a finite-dimensional inner product space over the complex numbers.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

In descriptive set theory, specifically invariant descriptive set theory, countable Borel relations are a class of relations between standard Borel space which are particularly well behaved. This concept encapsulates various more specific concepts, such as that of a hyperfinite equivalence relation, but is of interest in and of itself.