Diagnosis (artificial intelligence)

Last updated

As a subfield in artificial intelligence, Diagnosis is concerned with the development of algorithms and techniques that are able to determine whether the behaviour of a system is correct. If the system is not functioning correctly, the algorithm should be able to determine, as accurately as possible, which part of the system is failing, and which kind of fault it is facing. The computation is based on observations, which provide information on the current behaviour.

Contents

The expression diagnosis also refers to the answer of the question of whether the system is malfunctioning or not, and to the process of computing the answer. This word comes from the medical context where a diagnosis is the process of identifying a disease by its symptoms.

Example

An example of diagnosis is the process of a garage mechanic with an automobile. The mechanic will first try to detect any abnormal behavior based on the observations on the car and his knowledge of this type of vehicle. If he finds out that the behavior is abnormal, the mechanic will try to refine his diagnosis by using new observations and possibly testing the system, until he discovers the faulty component; the mechanic plays an important role in the vehicle diagnosis.

Expert diagnosis

The expert diagnosis (or diagnosis by expert system) is based on experience with the system. Using this experience, a mapping is built that efficiently associates the observations to the corresponding diagnoses.

The experience can be provided:

The main drawbacks of these methods are:

A slightly different approach is to build an expert system from a model of the system rather than directly from an expertise. An example is the computation of a diagnoser for the diagnosis of discrete event systems. This approach can be seen as model-based, but it benefits from some advantages and suffers some drawbacks of the expert system approach.

Model-based diagnosis

Model-based diagnosis is an example of abductive reasoning using a model of the system. In general, it works as follows:

Principle of the model-based diagnosis Principle-diagnosis.png
Principle of the model-based diagnosis

We have a model that describes the behaviour of the system (or artefact). The model is an abstraction of the behaviour of the system and can be incomplete. In particular, the faulty behaviour is generally little-known, and the faulty model may thus not be represented. Given observations of the system, the diagnosis system simulates the system using the model, and compares the observations actually made to the observations predicted by the simulation.

The modelling can be simplified by the following rules (where is the Abnormal predicate):

(fault model)

The semantics of these formulae is the following: if the behaviour of the system is not abnormal (i.e. if it is normal), then the internal (unobservable) behaviour will be and the observable behaviour . Otherwise, the internal behaviour will be and the observable behaviour . Given the observations , the problem is to determine whether the system behaviour is normal or not ( or ). This is an example of abductive reasoning.

Diagnosability

A system is said to be diagnosable if whatever the behavior of the system, we will be able to determine without ambiguity a unique diagnosis.

The problem of diagnosability is very important when designing a system because on one hand one may want to reduce the number of sensors to reduce the cost, and on the other hand one may want to increase the number of sensors to increase the probability of detecting a faulty behavior.

Several algorithms for dealing with these problems exist. One class of algorithms answers the question whether a system is diagnosable; another class looks for sets of sensors that make the system diagnosable, and optionally comply to criteria such as cost optimization.

The diagnosability of a system is generally computed from the model of the system. In applications using model-based diagnosis, such a model is already present and doesn't need to be built from scratch.

Bibliography

See also

DX workshops

DX is the annual International Workshop on Principles of Diagnosis that started in 1989.

Epistemology

Related Research Articles

<span class="mw-page-title-main">Artificial neural network</span> Computational model used in machine learning, based on connected, hierarchical functions

Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains.

Pattern recognition is the automated recognition of patterns and regularities in data. It has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power. These activities can be viewed as two facets of the same field of application, and they have undergone substantial development over the past few decades.

<span class="mw-page-title-main">Outlier</span> Observation far apart from others in statistics and data science

In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to variability in the measurement or it may indicate experimental error; the latter are sometimes excluded from the data set. An outlier can cause serious problems in statistical analyses.

The mathematical term well-posed problem stems from a definition given by 20th-century French mathematician Jacques Hadamard. He believed that mathematical models of physical phenomena should have the properties that:

  1. a solution exists,
  2. the solution is unique,
  3. the solution's behaviour changes continuously with the initial conditions.

The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events, especially in the context of Markov information sources and hidden Markov models (HMM).

<span class="mw-page-title-main">Machine learning</span> Study of algorithms that improve automatically through experience

Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.

<span class="mw-page-title-main">Graphical model</span> Probabilistic model

A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

<span class="mw-page-title-main">Ant colony optimization algorithms</span>

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.

<span class="mw-page-title-main">Simultaneous localization and mapping</span> Computational problem of constructing a map while tracking an agents location within it

Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. While this initially appears to be a chicken-and-egg problem there are several algorithms known for solving it, at least approximately, in tractable time for certain environments. Popular approximate solution methods include the particle filter, extended Kalman filter, covariance intersection, and GraphSLAM. SLAM algorithms are based on concepts in computational geometry and computer vision, and are used in robot navigation, robotic mapping and odometry for virtual reality or augmented reality.

In artificial intelligence, model-based reasoning refers to an inference method used in expert systems based on a model of the physical world. With this approach, the main focus of application development is developing the model. Then at run time, an "engine" combines this model knowledge with observed data to derive conclusions such as a diagnosis or a prediction.

<span class="mw-page-title-main">Intelligent agent</span> Software agent which acts autonomously

In artificial intelligence, an intelligent agent (IA) is anything which perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or may use knowledge. They may be simple or complex — a thermostat is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.

INTERNIST-I was a broad-based computer-assisted diagnostic tool developed in the early 1970s at the University of Pittsburgh as an educational experiment. The system was designed to capture the expertise of just one man, Jack D. Myers, MD, chairman of internal medicine in the University of Pittsburgh School of Medicine. The Division of Research Resources and the National Library of Medicine funded INTERNIST-I. Other major collaborators on the project included Randolph A. Miller and Harry E. Pople.

Action selection is a way of characterizing the most basic problem of intelligent systems: what to do next. In artificial intelligence and computational cognitive science, "the action selection problem" is typically associated with intelligent agents and animats—artificial systems that exhibit complex behaviour in an agent environment. The term is also sometimes used in ethology or animal behavior.

The Autism Diagnostic Interview-Revised (ADI-R) is a structured interview conducted with the parents of individuals who have been referred for the evaluation of possible autism or autism spectrum disorders. The interview, used by researchers and clinicians for decades, can be used for diagnostic purposes for anyone with a mental age of at least 24 months and measures behavior in the areas of reciprocal social interaction, communication and language, and patterns of behavior.

Activity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.

Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis of the discrepancy between the sensor readings and expected values, derived from some model. In the latter case, it is typical that a fault is said to be detected if the discrepancy or residual goes above a certain threshold. It is then the task of fault isolation to categorize the type of fault and its location in the machinery. Fault detection and isolation (FDI) techniques can be broadly classified into two categories. These include model-based FDI and signal processing based FDI.

Thompson sampling, named after William R. Thompson, is a heuristic for choosing actions that addresses the exploration-exploitation dilemma in the multi-armed bandit problem. It consists of choosing the action that maximizes the expected reward with respect to a randomly drawn belief.

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Artificial intelligence in healthcare</span> Overview of the use of artificial intelligence in healthcare

Artificial intelligence in healthcare is an overarching term used to describe the use of machine-learning algorithms and software, or artificial intelligence (AI), to mimic human cognition in the analysis, presentation, and comprehension of complex medical and health care data. Specifically, AI is the ability of computer algorithms to approximate conclusions based solely on input data.