Dialogic ADPCM

Last updated

Dialogic ADPCM or VOX is an audio file format, optimized for storing digitized voice data at a low sampling rate. VOX files are most commonly found in telephony applications, as well as an occasional arcade redemption game.[ citation needed ] It uses a lossy compression algorithm, optimized for voice, not high fidelity.

Similar to other ADPCM (Adaptive Differential Pulse Code Modulation) formats, Dialogic ADPCM compresses audio data into a series of 4-bit samples. The original Dialogic ADPCM paper (linked to below) does not specify or mention a recording or playback frequency; it may be at the implementer discretion. However, traditionally, files commonly have a sampling rate of 6000 or 8000 samples per second, but 8000 samples per second (8000 Hz) is more common. 8000 Hz matches the sampling rate used in G.711 voice systems such as DS1.

Unlike a WAV file, a VOX file does not contain a header to specify the encoding format or the sampling rate, so this information must be known in order to play the file. If not known, it is normally assumed that a VOX file is encoded with Dialogic ADPCM at a sampling rate of 8000 Hz. It is possible that a VOX file may be encoded in a format other than Dialogic ADPCM, but this is not common.

Dialogic ADPCM is an open file format. It matches ITU-T standard G.721, later superseded by G.726.

The algorithm for Dialogic ADPCM was developed by Oki Electric, which also produced ICs such as the Oki Semiconductor MSM7580 to implement the algorithm in hardware. These ICs were used on popular telephony interface cards manufactured by Dialogic Corporation for use in voicemail and similar systems. As this was the most common use for the file format, it became known as "Dialogic ADPCM."

Some early BlackBerry phones that don't support MP3 format (e.g. 7100) used that codec for sound files which had ADP filetype extension. These must be of max filesize of 128 Kbytes or less.

ADP filetype extension were being just renamed VOX filetype extension. The AD4 extension is also used for files compressed using "Dialogic ADPCM" with a sample rate of 36000 Hz. This means that .ad4 files can be decoded if imported as VOX ADPCM with a sample rate set to 36 kHz on software that allows such settings, like e.g. Audacity.

Related Research Articles

The Au file format is a simple audio file format introduced by Sun Microsystems. The format was common on NeXT systems and on early Web pages. Originally it was headerless, being simply 8-bit μ-law-encoded data at an 8000 Hz sample rate. Hardware from other vendors often used sample rates as high as 8192 Hz, often integer multiples of video clock signal frequencies. Newer files have a header that consists of six unsigned 32-bit words, an optional information chunk which is always of non-zero size, and then the data.

<span class="mw-page-title-main">MP3</span> Digital audio format

MP3 is a coding format for digital audio developed largely by the Fraunhofer Society in Germany under the lead of Karlheinz Brandenburg, with support from other digital scientists in other countries. Originally defined as the third audio format of the MPEG-1 standard, it was retained and further extended — defining additional bit-rates and support for more audio channels — as the third audio format of the subsequent MPEG-2 standard. A third version, known as MPEG-2.5 — extended to better support lower bit rates — is commonly implemented, but is not a recognized standard.

The Real-time Transport Protocol (RTP) is a network protocol for delivering audio and video over IP networks. RTP is used in communication and entertainment systems that involve streaming media, such as telephony, video teleconference applications including WebRTC, television services and web-based push-to-talk features.

Speech coding is an application of data compression to digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream.

Waveform Audio File Format is an audio file format standard, developed by IBM and Microsoft, for storing an audio bitstream on personal computers. It is the main format used on Microsoft Windows systems for uncompressed audio. The usual bitstream encoding is the linear pulse-code modulation (LPCM) format.

Windows Media Audio (WMA) is a series of audio codecs and their corresponding audio coding formats developed by Microsoft. It is a proprietary technology that forms part of the Windows Media framework. WMA consists of four distinct codecs. The original WMA codec, known simply as WMA, was conceived as a competitor to the popular MP3 and RealAudio codecs. WMA Pro, a newer and more advanced codec, supports multichannel and high resolution audio. A lossless codec, WMA Lossless, compresses audio data without loss of audio fidelity. WMA Voice, targeted at voice content, applies compression using a range of low bit rates. Microsoft has also developed a digital container format called Advanced Systems Format to store audio encoded by WMA.

<span class="mw-page-title-main">Digital audio</span> Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.

Speex is an audio compression codec specifically tuned for the reproduction of human speech and also a free software speech codec that may be used on voice over IP applications and podcasts. It is based on the code excited linear prediction speech coding algorithm. Its creators claim Speex to be free of any patent restrictions and it is licensed under the revised (3-clause) BSD license. It may be used with the Ogg container format or directly transmitted over UDP/RTP. It may also be used with the FLV container format.

<span class="mw-page-title-main">G.711</span> ITU-T recommendation

G.711 is a narrowband audio codec originally designed for use in telephony that provides toll-quality audio at 64 kbit/s. It is an ITU-T standard (Recommendation) for audio encoding, titled Pulse code modulation (PCM) of voice frequencies released for use in 1972.

The Adaptive Multi-Rateaudio codec is an audio compression format optimized for speech coding. AMR is a multi-rate narrowband speech codec that encodes narrowband (200–3400 Hz) signals at variable bit rates ranging from 4.75 to 12.2 kbit/s with toll quality speech starting at 7.4 kbit/s.

Adaptive Multi-Rate Wideband (AMR-WB) is a patented wideband speech audio coding standard developed based on Adaptive Multi-Rate encoding, using a similar methodology to algebraic code-excited linear prediction (ACELP). AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz compared to narrowband speech coders which in general are optimized for POTS wireline quality of 300–3400 Hz. AMR-WB was developed by Nokia and VoiceAge and it was first specified by 3GPP.

<span class="mw-page-title-main">G.729</span> ITU-T Recommendation

G.729 is a royalty-free narrow-band vocoder-based audio data compression algorithm using a frame length of 10 milliseconds. It is officially described as Coding of speech at 8 kbit/s using code-excited linear prediction speech coding (CS-ACELP), and was introduced in 1996. The wide-band extension of G.729 is called G.729.1, which equals G.729 Annex J.

<span class="mw-page-title-main">G.722</span> ITU-T recommendation

G.722 is an ITU-T standard 7 kHz wideband audio codec operating at 48, 56 and 64 kbit/s. It was approved by ITU-T in November 1988. Technology of the codec is based on sub-band ADPCM (SB-ADPCM). The corresponding narrow-band codec based on the same technology is G.726.

<span class="mw-page-title-main">G.726</span> ITU-T Recommendation

G.726 is an ITU-T ADPCM speech codec standard covering the transmission of voice at rates of 16, 24, 32, and 40 kbit/s. It was introduced to supersede both G.721, which covered ADPCM at 32 kbit/s, and G.723, which described ADPCM for 24 and 40 kbit/s. G.726 also introduced a new 16 kbit/s rate. The four bit rates associated with G.726 are often referred to by the bit size of a sample, which are 2, 3, 4, and 5-bits respectively. The corresponding wide-band codec based on the same technology is G.722.

Enhanced Variable Rate Codec B (EVRC-B) is a speech codec used by CDMA networks. EVRC-B is an enhancement to EVRC and compresses each 20 milliseconds of 8000 Hz, 16-bit sampled speech input into output frames of one of the four different sizes: Rate 1 - 171 bits, Rate 1/2 - 80 bits, Rate 1/4 - 40 bits, Rate 1/8 - 16 bits.

G.719 is an ITU-T standard audio coding format providing high quality, moderate bit rate wideband audio coding at low computational load. It was produced through a collaboration between Polycom and Ericsson.

<span class="mw-page-title-main">G.718</span> ITU-T Recommendation

G.718 is an ITU-T Recommendation embedded scalable speech and audio codec providing high quality narrowband speech over the lower bit rates and high quality wideband speech over the complete range of bit rates. In addition, G.718 is designed to be highly robust to frame erasures, thereby enhancing the speech quality when used in Internet Protocol (IP) transport applications on fixed, wireless and mobile networks. Despite its embedded nature, the codec also performs well with both narrowband and wideband generic audio signals. The codec has an embedded scalable structure, enabling maximum flexibility in the transport of voice packets through IP networks of today and in future media-aware networks. In addition, the embedded structure of G.718 will easily allow the codec to be extended to provide a superwideband and stereo capability through additional layers which are currently under development in ITU-T Study Group 16. The bitstream may be truncated at the decoder side or by any component of the communication system to instantaneously adjust the bit rate to the desired value without the need for out-of-band signalling. The encoder produces an embedded bitstream structured in five layers corresponding to the five available bit rates: 8, 12, 16, 24 & 32 kbit/s.

Adaptive differential pulse-code modulation (ADPCM) is a variant of differential pulse-code modulation (DPCM) that varies the size of the quantization step, to allow further reduction of the required data bandwidth for a given signal-to-noise ratio.

aptX Family of proprietary audio codecs owned by Qualcomm

aptX is a family of proprietary audio codec compression algorithms owned by Qualcomm, with a heavy emphasis on wireless audio applications.

Pulse-code modulation (PCM) is a method used to digitally represent sampled analog signals. It is the standard form of digital audio in computers, compact discs, digital telephony and other digital audio applications. In a PCM stream, the amplitude of the analog signal is sampled at uniform intervals, and each sample is quantized to the nearest value within a range of digital steps.

References