Enumerative combinatorics

Last updated

Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets Si indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in Sn for each n. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description. The twelvefold way provides a unified framework for counting permutations, combinations and partitions.

Contents

The simplest such functions are closed formulas , which can be expressed as a composition of elementary functions such as factorials, powers, and so on. For instance, as shown below, the number of different possible orderings of a deck of n cards is f(n) = n!. The problem of finding a closed formula is known as algebraic enumeration, and frequently involves deriving a recurrence relation or generating function and using this to arrive at the desired closed form.

Often, a complicated closed formula yields little insight into the behavior of the counting function as the number of counted objects grows. In these cases, a simple asymptotic approximation may be preferable. A function is an asymptotic approximation to if as . In this case, we write

Generating functions

Generating functions are used to describe families of combinatorial objects. Let denote the family of objects and let F(x) be its generating function. Then

where denotes the number of combinatorial objects of size n. The number of combinatorial objects of size n is therefore given by the coefficient of . Some common operation on families of combinatorial objects and its effect on the generating function will now be developed. The exponential generating function is also sometimes used. In this case it would have the form

Once determined, the generating function yields the information given by the previous approaches. In addition, the various natural operations on generating functions such as addition, multiplication, differentiation, etc., have a combinatorial significance; this allows one to extend results from one combinatorial problem in order to solve others.

Union

Given two combinatorial families, and with generating functions F(x) and G(x) respectively, the disjoint union of the two families () has generating function F(x) + G(x).

Pairs

For two combinatorial families as above the Cartesian product (pair) of the two families () has generating function F(x)G(x).

Sequences

A (finite) sequence generalizes the idea of the pair as defined above. Sequences are arbitrary Cartesian products of a combinatorial object with itself. Formally:

To put the above in words: An empty sequence or a sequence of one element or a sequence of two elements or a sequence of three elements, etc. The generating function would be:

Combinatorial structures

The above operations can now be used to enumerate common combinatorial objects including trees (binary and plane), Dyck paths and cycles. A combinatorial structure is composed of atoms. For example, with trees the atoms would be the nodes. The atoms which compose the object can either be labeled or unlabeled. Unlabeled atoms are indistinguishable from each other, while labelled atoms are distinct. Therefore, for a combinatorial object consisting of labeled atoms a new object can be formed by simply swapping two or more atoms.

Binary and plane trees

Binary and plane trees are examples of an unlabeled combinatorial structure. Trees consist of nodes linked by edges in such a way that there are no cycles. There is generally a node called the root, which has no parent node. In plane trees each node can have an arbitrary number of children. In binary trees, a special case of plane trees, each node can have either two or no children. Let denote the family of all plane trees. Then this family can be recursively defined as follows:

In this case represents the family of objects consisting of one node. This has generating function x. Let P(x) denote the generating function . Putting the above description in words: A plane tree consists of a node to which is attached an arbitrary number of subtrees, each of which is also a plane tree. Using the operation on families of combinatorial structures developed earlier, this translates to a recursive generating function:

After solving for P(x):

An explicit formula for the number of plane trees of size n can now be determined by extracting the coefficient of xn:

Note: The notation [xn] f(x) refers to the coefficient of xn in f(x). The series expansion of the square root is based on Newton's generalization of the binomial theorem. To get from the fourth to fifth line manipulations using the generalized binomial coefficient is needed.

The expression on the last line is equal to the (n  1)st Catalan number. Therefore, pn = cn−1.

See also

Related Research Articles

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

Partition (number theory) Decomposition of an integer as a sum of positive integers

In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, 4 can be partitioned in five distinct ways:

In combinatorial mathematics, the theory of combinatorial species is an abstract, systematic method for deriving the generating functions of discrete structures, which allows one to not merely count these structures but give bijective proofs involving them. Examples of combinatorial species are graphs, permutations, trees, and so on; each of these has an associated generating function which counts how many structures there are of a certain size. One goal of species theory is to be able to analyse complicated structures by describing them in terms of transformations and combinations of simpler structures. These operations correspond to equivalent manipulations of generating functions, so producing such functions for complicated structures is much easier than with other methods. The theory was introduced, carefully elaborated and applied by the Canadian group of people around André Joyal.

In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s.

Catalan number Recursive integer sequence

In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894).

In mathematics, a Dirichlet series is any series of the form

In mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof:

The Wedderburn–Etherington numbers are an integer sequence named for Ivor Malcolm Haddon Etherington and Joseph Wedderburn that can be used to count certain kinds of binary trees. The first few numbers in the sequence are

In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions.

Plane partition

In mathematics and especially in combinatorics, a plane partition is a two-dimensional array of nonnegative integers that is nonincreasing in both indices. This means that

The Pólya enumeration theorem, also known as the Redfield–Pólya theorem and Pólya counting, is a theorem in combinatorics that both follows from and ultimately generalizes Burnside's lemma on the number of orbits of a group action on a set. The theorem was first published by J. Howard Redfield in 1927. In 1937 it was independently rediscovered by George Pólya, who then greatly popularized the result by applying it to many counting problems, in particular to the enumeration of chemical compounds.

Ordered Bell number Number of weak orderings

In number theory and enumerative combinatorics, the ordered Bell numbers or Fubini numbers count the number of weak orderings on a set of n elements. Starting from n = 0, these numbers are

The use of exponential generating functions (EGFs) to study the properties of Stirling numbers is a classical exercise in combinatorial mathematics and possibly the canonical example of how symbolic combinatorics is used. It also illustrates the parallels in the construction of these two types of numbers, lending support to the binomial-style notation that is used for them.

Graph enumeration

In combinatorics, an area of mathematics, graph enumeration describes a class of combinatorial enumeration problems in which one must count undirected or directed graphs of certain types, typically as a function of the number of vertices of the graph. These problems may be solved either exactly or asymptotically. The pioneers in this area of mathematics were George Pólya, Arthur Cayley and J. Howard Redfield.

Schröder–Hipparchus number

In combinatorics, the Schröder–Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of dissecting a convex polygon into smaller polygons by inserting diagonals. These numbers begin

In combinatorial mathematics, the labelled enumeration theorem is the counterpart of the Pólya enumeration theorem for the labelled case, where we have a set of labelled objects given by an exponential generating function (EGF) g(z) which are being distributed into n slots and a permutation group G which permutes the slots, thus creating equivalence classes of configurations. There is a special re-labelling operation that re-labels the objects in the slots, assigning labels from 1 to k, where k is the total number of nodes, i.e. the sum of the number of nodes of the individual objects. The EGF of the number of different configurations under this re-labelling process is given by

Telephone number (mathematics) Number of ways to connect n phone lines

In mathematics, the telephone numbers or the involution numbers form a sequence of integers that count the ways n telephone lines can be connected to each other, where each line can be connected to at most one other line. These numbers also describe the number of matchings of a complete graph on n vertices, the number of permutations on n elements that are involutions, the sum of absolute values of coefficients of the Hermite polynomials, the number of standard Young tableaux with n cells, and the sum of the degrees of the irreducible representations of the symmetric group. Involution numbers were first studied in 1800 by Heinrich August Rothe, who gave a recurrence equation by which they may be calculated, giving the values

A Boltzmann sampler is an algorithm intended for random sampling of combinatorial structures. If the object size is viewed as its energy, and the argument of the corresponding generating function is interpreted in terms of the temperature of the physical system, then a Boltzmann sampler returns an object from a classical Boltzmann distribution.

In mathematics, the plethystic exponential is a certain operator defined on (formal) power series which, like the usual exponential function, translates addition into multiplication. This exponential operator appears naturally in the theory of symmetric functions, as a concise relation between the generating series for elementary, complete and power sums homogeneous symmetric polynomials in many variables. Its name comes from the operation called plethysm, defined in the context of so-called lambda rings.

References