Fitch notation

Last updated

Fitch notation, also known as Fitch diagrams (named after Frederic Fitch), is a notational system for constructing formal proofs used in sentential logics and predicate logics. Fitch-style proofs arrange the sequence of sentences that make up the proof into rows. A unique feature of Fitch notation is that the degree of indentation of each row conveys which assumptions are active for that step.

Contents

Example

Each row in a Fitch-style proof is either:

Introducing a new assumption increases the level of indentation, and begins a new vertical "scope" bar that continues to indent subsequent lines until the assumption is discharged. This mechanism immediately conveys which assumptions are active for any given line in the proof, without the assumptions needing to be rewritten on every line (as with sequent-style proofs).

The following example displays the main features of Fitch notation:

0 |__                        [assumption, want P if not P] 1 |   |__ P                  [assumption, want not P] 2 |   |   |__ not P          [assumption, for reduction] 3 |   |   |   contradiction  [contradiction introduction: 1, 2] 4 |   |   not P          [negation introduction: 2]   | 5 |   |__ not P          [assumption, want P] 6 |   |   P                  [negation elimination: 5]   | 7 |   P if not P        [biconditional introduction: 1 - 4, 5 - 6] 

0. The null assumption, i.e., we are proving a tautology
1. Our first subproof: we assume the l.h.s. to show the r.h.s. follows
2. A subsubproof: we are free to assume what we want. Here we aim for a reductio ad absurdum
3. We now have a contradiction
4. We are allowed to prefix the statement that "caused" the contradiction with a not
5. Our second subproof: we assume the r.h.s. to show the l.h.s. follows
6. We invoke the rule that allows us to remove an even number of nots from a statement prefix
7. From 1 to 4 we have shown if P then not not P, from 5 to 6 we have shown P if not not P; hence we are allowed to introduce the biconditional

See also

Related Research Articles

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid.

Planner is a programming language designed by Carl Hewitt at MIT, and first published in 1969. First, subsets such as Micro-Planner and Pico-Planner were implemented, and then essentially the whole language was implemented as Popler by Julian Davies at the University of Edinburgh in the POP-2 programming language. Derivations such as QA4, Conniver, QLISP and Ether were important tools in artificial intelligence research in the 1970s, which influenced commercial developments such as Knowledge Engineering Environment (KEE) and Automated Reasoning Tool (ART).

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0, O, and the up tack symbol .

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

In mathematical logic and logic programming, a Horn clause is a logical formula of a particular rule-like form that gives it useful properties for use in logic programming, formal specification, universal algebra and model theory. Horn clauses are named for the logician Alfred Horn, who first pointed out their significance in 1951.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true". This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

Paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, which reject the principle of explosion.

In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs from a hypothesis in systems that do not explicitly axiomatize that hypothesis, i.e. to prove an implication A → B, it is sufficient to assume A as a hypothesis and then proceed to derive B. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction.

In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition can be inferred; this is known as deductive explosion.

The cut-elimination theorem is the central result establishing the significance of the sequent calculus. It was originally proved by Gerhard Gentzen in his landmark 1934 paper "Investigations in Logical Deduction" for the systems LJ and LK formalising intuitionistic and classical logic respectively. The cut-elimination theorem states that any judgement that possesses a proof in the sequent calculus making use of the cut rule also possesses a cut-free proof, that is, a proof that does not make use of the cut rule.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

Suppes–Lemmon notation is a natural deductive logic notation system developed by E.J. Lemmon. Derived from Suppes' method, it represents natural deduction proofs as sequences of justified steps. Both methods use inference rules derived from Gentzen's 1934/1935 natural deduction system, in which proofs were presented in tree-diagram form rather than in the tabular form of Suppes and Lemmon. Although the tree-diagram layout has advantages for philosophical and educational purposes, the tabular layout is much more convenient for practical applications.

References