Fuse cutout

Last updated
Cutout (left) attached to a feeder line (connection at the right not shown). The lower wire goes to the transformer Cutout fuse.jpg
Cutout (left) attached to a feeder line (connection at the right not shown). The lower wire goes to the transformer
A set of pole top cutouts (with C-shaped bodies) protecting a transformer on a 12.47 kV distribution line. One fuse is blown and the tube is hanging down. Lightning arresters are mounted on the crossarm opposite the fuse cutouts. Blown Fuse Cutout 640.jpg
A set of pole top cutouts (with C-shaped bodies) protecting a transformer on a 12.47 kV distribution line. One fuse is blown and the tube is hanging down. Lightning arresters are mounted on the crossarm opposite the fuse cutouts.
Fuse cutouts with V-shaped bodies. Cutout-V.png
Fuse cutouts with V-shaped bodies.

In electrical distribution, a fuse cutout or cut-out fuse (often referred to as a cutout) is a combination of a fuse and a switch, used in primary overhead feeder lines and taps to protect distribution transformers from current surges and overloads. An overcurrent caused by a fault in the transformer or customer circuit will cause the fuse to melt and the switch mechanism to visibly open, disconnecting the transformer from the line. The device can also be opened manually by utility linemen standing on the ground and using a long insulating stick called a "hot stick".

Contents

Components

A cutout and fuse assembly consist of three major components:

The fuse holder may be replaced by a solid blade, which would allow the fuse holder assembly to be used as a switch only.

Construction

The fuse elements used in most distribution cutouts are tin or silver alloy wires that melt when subjected to high enough current. Ampere ratings of fuse elements vary from 1 ampere to 200 amperes but a solid door will allow the full 300 ampere capacity of the cutout to be utilized.

Cutouts are typically mounted about 20 degrees off vertical so that the center of gravity of the fuse holder is displaced and the fuse holder will rotate and fall open under its own weight when the fuse blows. Mechanical tension on the fuse link normally holds an ejector spring in a stable position. When the fuse blows, the released spring pulls the stub of the fuse link out of the fuse holder tube to reduce surge duration and damage to the transformer and fuse holder. This quenches any arc in the fuse holder.

Linemen from Huntsville Utilities replace a blown cutout fuse with a non-conductive extending pole tool on July 10th, 2022 in Huntsville, Alabama. Cutout Fuse Replacement.jpg
Linemen from Huntsville Utilities replace a blown cutout fuse with a non-conductive extending pole tool on July 10th, 2022 in Huntsville, Alabama.

Each fuse holder typically has an attached pull ring that can be engaged by a hook at the end of a fiberglass hot stick operated by a lineworker standing on the ground or from a bucket truck, to manually open the switch. While often used for switching, the standard cutout shown is not designed to be manually opened under load. For applications where the switch is likely to be used to interrupt power manually, a "load break" version is available that has an attachment to quench the arc.

Standards

Up until the mid-1990s each manufacturer used their own dimensional standards for cutout design; by the late 1990s most cutouts were of an "interchangeable design". This design allows for the interchangeable use of cutout bodies and fuse holders manufactured by different vendors.

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type of switch is an electromechanical device consisting of one or more sets of movable electrical contacts connected to external circuits. When a pair of contacts is touching current can pass between them, while when the contacts are separated no current can flow.

<span class="mw-page-title-main">Commutator (electric)</span> Device for changing direction of current

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings on the armature are connected to the commutator segments.

<span class="mw-page-title-main">Power supply</span> Electronic device that converts or regulates electric energy and supplies it to a load

A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

<span class="mw-page-title-main">Circuit breaker</span> Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by overcurrent. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

<span class="mw-page-title-main">Electrical substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

<span class="mw-page-title-main">Fuse (electrical)</span> Electrical safety device that provides overcurrent protection

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current. It is a sacrificial device; once a fuse has operated, it is an open circuit, and must be replaced or rewired, depending on its type.

An antifuse is an electrical device that performs the opposite function to a fuse. Whereas a fuse starts with a low resistance and is designed to permanently break or open an electrically conductive path, an antifuse starts with a high resistance--an open circuit--and programming it converts it into a permanent electrically conductive path. This technology has many applications. Antifuses are best known for their use in mini-light style low-voltage Christmas tree lights.

<span class="mw-page-title-main">Distribution transformer</span> Final stage in power distribution to users

A distribution transformer or service transformer is a transformer that provides the final voltage transformation in the electric power distribution system, stepping down the voltage used in the distribution lines to the level used by the customer. The invention of a practical efficient transformer made AC power distribution feasible; a system using distribution transformers was demonstrated as early as 1882.

<span class="mw-page-title-main">Recloser</span>

In electric power distribution, automatic circuit reclosers (ACRs) are a class of switchgear designed for use on overhead electricity distribution networks to detect and interrupt transient faults. Also known as reclosers or autoreclosers, ACRs are essentially rated circuit breakers with integrated current and voltage sensors and a protection relay, optimized for use as a protection asset. Commercial ACRs are governed by the IEC 62271-111/IEEE Std C37.60 and IEC 62271-200 standards. The three major classes of operating maximum voltage are 15.5 kV, 27 kV and 38 kV.

<span class="mw-page-title-main">Switchgear</span> Control gear of an electric power system

In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

<span class="mw-page-title-main">Thermal cutoff</span>

A thermal cutoff is an electrical safety device that interrupts electric current when heated to a specific temperature. These devices may be for one-time use, or may be reset manually or automatically.

<span class="mw-page-title-main">Magnet wire</span> Coated wire for construction of coils

Magnet wire or enameled wire is a copper or aluminium wire coated with a very thin layer of insulation. It is used in the construction of transformers, inductors, motors, generators, speakers, hard disk head actuators, electromagnets, electric guitar pickups, and other applications that require tight coils of insulated wire.

<span class="mw-page-title-main">Knife switch</span> Type of switch

A knife switch is a type of switch used to control the flow of electricity in a circuit. It is composed of a hinge which allows a metal lever, or knife, to be lifted from or inserted into a slot or jaw. The hinge and jaw are both fixed to an insulated base, and the knife has an insulated handle to grip at one end. Current flows through the switch when the knife is pushed into the jaw. Knife switches can take several forms, including single throw, in which the "knife" engages with only a single slot, and double throw, in which the knife hinge is placed between two slots and can engage with either one. Multiple knives may be attached to a single handle and can be used to activate more than one circuit simultaneously.

<span class="mw-page-title-main">Hot stick</span> Electricians tool

In the electric power distribution industry, a hot stick is an insulated pole, usually made of fiberglass, used by electric utility workers when engaged on live-line working on energized high-voltage electric power lines, to protect them from electric shock. Depending on the tool attached to the end of the hot stick, it is possible to test for voltage, tighten nuts and bolts, apply tie wires, open and close switches, replace fuses, lay insulating sleeves on wires, and perform various other tasks while not exposing the crew to a large risk of electric shock.

<span class="mw-page-title-main">Automotive fuse</span> Class of fuses used to protect the wiring and electrical equipment for vehicles

Automotive fuses are a class of fuses used to protect the wiring and electrical equipment for vehicles. They are generally rated for circuits no higher than 32 volts direct current, but some types are rated for 42-volt electrical systems. They are occasionally used in non-automotive electrical products. Automotive fuses are typically housed inside one or more fuse boxes within the vehicle, typically on one side of the engine compartment and/or under the dash near the steering wheel. Some fuses or circuit breakers may nonetheless be placed elsewhere, such as near the cabin fan or air bag controller. They also exist as circuit breakers that are resettable using a switch.

In electrical engineering, IEC 60269 is a set of technical standards for low-voltage power fuses. The standard is in four volumes, which describe general requirements, fuses for industrial and commercial applications, fuses for residential applications, and fuses to protect semiconductor devices. The IEC standard unifies several national standards, thereby improving the interchangeability of fuses in international trade. All fuses of different technologies tested to meet IEC standards will have similar time-current characteristics, which simplifies design and maintenance.

Instrument transformers are high accuracy class electrical devices used to isolate or transform voltage or current levels. The most common usage of instrument transformers is to operate instruments or metering from high voltage or high current circuits, safely isolating secondary control circuitry from the high voltages or currents. The primary winding of the transformer is connected to the high voltage or high current circuit, and the meter or relay is connected to the secondary circuit.

<span class="mw-page-title-main">AC power plugs and sockets: British and related types</span> AC power plug type

Plugs and sockets for electrical appliances not hardwired to mains electricity originated in the United Kingdom in the 1870s and were initially two-pin designs. These were usually sold as a mating pair, but gradually de facto and then official standards arose to enable the interchange of compatible devices. British standards have proliferated throughout large parts of the former British Empire.