Gas in a box

Last updated

In quantum mechanics, the results of the quantum particle in a box can be used to look at the equilibrium situation for a quantum ideal gas in a box which is a box containing a large number of molecules which do not interact with each other except for instantaneous thermalizing collisions. This simple model can be used to describe the classical ideal gas as well as the various quantum ideal gases such as the ideal massive Fermi gas, the ideal massive Bose gas as well as black body radiation (photon gas) which may be treated as a massless Bose gas, in which thermalization is usually assumed to be facilitated by the interaction of the photons with an equilibrated mass.

Contents

Using the results from either Maxwell–Boltzmann statistics, Bose–Einstein statistics or Fermi–Dirac statistics, and considering the limit of a very large box, the Thomas–Fermi approximation (named after Enrico Fermi and Llewellyn Thomas) is used to express the degeneracy of the energy states as a differential, and summations over states as integrals. This enables thermodynamic properties of the gas to be calculated with the use of the partition function or the grand partition function. These results will be applied to both massive and massless particles. More complete calculations will be left to separate articles, but some simple examples will be given in this article.

Thomas–Fermi approximation for the degeneracy of states

For both massive and massless particles in a box, the states of a particle are enumerated by a set of quantum numbers [nx, ny, nz]. The magnitude of the momentum is given by

where h is the Planck constant and L is the length of a side of the box. Each possible state of a particle can be thought of as a point on a 3-dimensional grid of positive integers. The distance from the origin to any point will be

Suppose each set of quantum numbers specify f states where f is the number of internal degrees of freedom of the particle that can be altered by collision. For example, a spin 12 particle would have f = 2, one for each spin state. For large values of n, the number of states with magnitude of momentum less than or equal to p from the above equation is approximately

which is just f times the volume of a sphere of radius n divided by eight since only the octant with positive ni is considered. Using a continuum approximation, the number of states with magnitude of momentum between p and p + dp is therefore

where V = L3 is the volume of the box. Notice that in using this continuum approximation, also known as Thomas−Fermi approximation, the ability to characterize the low-energy states is lost, including the ground state where ni = 1. For most cases this will not be a problem, but when considering Bose–Einstein condensation, in which a large portion of the gas is in or near the ground state, the ability to deal with low energy states becomes important.

Without using any approximation, the number of particles with energy εi is given by

where is the degeneracy of state i and

with β = 1/kBT, the Boltzmann constant kB, temperature T, and chemical potential  μ. (See Maxwell–Boltzmann statistics, Bose–Einstein statistics, and Fermi–Dirac statistics.)

Using the Thomas−Fermi approximation, the number of particles dNE with energy between E and E + dE is:

where is the number of states with energy between E and E + dE.

Energy distribution

Using the results derived from the previous sections of this article, some distributions for the gas in a box can now be determined. For a system of particles, the distribution for a variable is defined through the expression which is the fraction of particles that have values for between and

where

It follows that:

For a momentum distribution , the fraction of particles with magnitude of momentum between and is:

and for an energy distribution , the fraction of particles with energy between and is:

For a particle in a box (and for a free particle as well), the relationship between energy and momentum is different for massive and massless particles. For massive particles,

while for massless particles,

where is the mass of the particle and is the speed of light. Using these relationships,

Specific examples

The following sections give an example of results for some specific cases.

Massive Maxwell–Boltzmann particles

For this case:

Integrating the energy distribution function and solving for N gives

Substituting into the original energy distribution function gives

which are the same results obtained classically for the Maxwell–Boltzmann distribution. Further results can be found in the classical section of the article on the ideal gas.

Massive Bose–Einstein particles

For this case:

where

Integrating the energy distribution function and solving for N gives the particle number

where Lis(z) is the polylogarithm function. The polylogarithm term must always be positive and real, which means its value will go from 0 to ζ(3/2) as z goes from 0 to 1. As the temperature drops towards zero, Λ will become larger and larger, until finally Λ will reach a critical value Λc where z = 1 and

where denotes the Riemann zeta function. The temperature at which Λ = Λc is the critical temperature. For temperatures below this critical temperature, the above equation for the particle number has no solution. The critical temperature is the temperature at which a Bose–Einstein condensate begins to form. The problem is, as mentioned above, that the ground state has been ignored in the continuum approximation. It turns out, however, that the above equation for particle number expresses the number of bosons in excited states rather well, and thus:

where the added term is the number of particles in the ground state. The ground state energy has been ignored. This equation will hold down to zero temperature. Further results can be found in the article on the ideal Bose gas.

Massless Bose–Einstein particles (e.g. black body radiation)

For the case of massless particles, the massless energy distribution function must be used. It is convenient to convert this function to a frequency distribution function:

where Λ is the thermal wavelength for massless particles. The spectral energy density (energy per unit volume per unit frequency) is then

Other thermodynamic parameters may be derived analogously to the case for massive particles. For example, integrating the frequency distribution function and solving for N gives the number of particles:

The most common massless Bose gas is a photon gas in a black body. Taking the "box" to be a black body cavity, the photons are continually being absorbed and re-emitted by the walls. When this is the case, the number of photons is not conserved. In the derivation of Bose–Einstein statistics, when the restraint on the number of particles is removed, this is effectively the same as setting the chemical potential (μ) to zero. Furthermore, since photons have two spin states, the value of f is 2. The spectral energy density is then

which is just the spectral energy density for Planck's law of black body radiation. Note that the Wien distribution is recovered if this procedure is carried out for massless Maxwell–Boltzmann particles, which approximates a Planck's distribution for high temperatures or low densities.

In certain situations, the reactions involving photons will result in the conservation of the number of photons (e.g. light-emitting diodes, "white" cavities). In these cases, the photon distribution function will involve a non-zero chemical potential. (Hermann 2005)

Another massless Bose gas is given by the Debye model for heat capacity. This model considers a gas of phonons in a box and differs from the development for photons in that the speed of the phonons is less than light speed, and there is a maximum allowed wavelength for each axis of the box. This means that the integration over phase space cannot be carried out to infinity, and instead of results being expressed in polylogarithms, they are expressed in the related Debye functions.

Massive Fermi–Dirac particles (e.g. electrons in a metal)

For this case:

Integrating the energy distribution function gives

where again, Lis(z) is the polylogarithm function and Λ is the thermal de Broglie wavelength. Further results can be found in the article on the ideal Fermi gas. Applications of the Fermi gas are found in the free electron model, the theory of white dwarfs and in degenerate matter in general.

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on Quantum Field Theory.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

In theoretical physics, a source field is a background field coupled to the original field as

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

In statistical mechanics of continuous systems, a potential for a many-body system is called H-stable if the potential energy per particle is bounded below by a constant that is independent of the total number of particles. In many circumstances, if a potential is not H-stable, it is not possible to define a grand canonical partition function in finite volume, because of catastrophic configurations with infinite particles located in a finite space.

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

In mathematical physics, Clebsch–Gordan coefficients are the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Mathematically, they specify the decomposition of the tensor product of two irreducible representations into a direct sum of irreducible representations, where the type and the multiplicities of these irreducible representations are known abstractly. The name derives from the German mathematicians Alfred Clebsch (1833–1872) and Paul Gordan (1837–1912), who encountered an equivalent problem in invariant theory.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.

References