High-performance technical computing

Last updated

High-performance technical computing (HPTC) is the application of high performance computing (HPC) to technical, as opposed to business or scientific, problems (although the lines between the various disciplines are necessarily vague). HPTC often refers to the application of HPC to engineering problems and includes computational fluid dynamics, simulation, modeling, and seismic tomography (particularly in the petrochemical industry).

See also


Related Research Articles

<span class="mw-page-title-main">Supercomputer</span> Type of extremely powerful computer

A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, there have existed supercomputers which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS).

<span class="mw-page-title-main">High-performance computing</span> Computing with supercomputers and clusters

High-performance computing (HPC) uses supercomputers and computer clusters to solve advanced computation problems.

<span class="mw-page-title-main">David Bader (computer scientist)</span> American computer scientist

David A. Bader is a Distinguished Professor and Director of the Institute for Data Science at the New Jersey Institute of Technology. Previously, he served as the Chair of the Georgia Institute of Technology School of Computational Science & Engineering, where he was also a founding professor, and the executive director of High-Performance Computing at the Georgia Tech College of Computing. In 2007, he was named the first director of the Sony Toshiba IBM Center of Competence for the Cell Processor at Georgia Tech. Bader has served on the Computing Research Association's Board of Directors, the National Science Foundation's Advisory Committee on Cyberinfrastructure, and on the IEEE Computer Society's Board of Governors. He is an expert in the design and analysis of parallel and multicore algorithms for real-world applications such as those in cybersecurity and computational biology. His main areas of research are at the intersection of high-performance computing and real-world applications, including cybersecurity, massive-scale analytics, and computational genomics. Bader built the first Linux supercomputer using commodity processors and a high-speed interconnection network.

<span class="mw-page-title-main">NEC SX</span>

NEC SX describes a series of vector supercomputers designed, manufactured, and marketed by NEC. This computer series is notable for providing the first computer to exceed 1 gigaflop, as well as the fastest supercomputer in the world between 1992–1993, and 2002–2004. The current model, as of 2018, is the SX-Aurora TSUBASA.

<span class="mw-page-title-main">Edinburgh Parallel Computing Centre</span> Supercomputing centre at the University of Edinburgh

EPCC, formerly the Edinburgh Parallel Computing Centre, is a supercomputing centre based at the University of Edinburgh. Since its foundation in 1990, its stated mission has been to accelerate the effective exploitation of novel computing throughout industry, academia and commerce.

<span class="mw-page-title-main">National Energy Research Scientific Computing Center</span> Supercomputer facility operated by the US Department of Energy in Berkeley, California

The National Energy Research Scientific Computing Center (NERSC), is a high-performance computing (supercomputer) National User Facility operated by Lawrence Berkeley National Laboratory for the United States Department of Energy Office of Science. As the mission computing center for the Office of Science, NERSC houses high performance computing and data systems used by 9,000 scientists at national laboratories and universities around the country. NERSC's newest and largest supercomputer is Perlmutter, which debuted in 2021 ranked 5th on the TOP500 list of world's fastest supercomputers.

The National Center for High-Performance Computing is one of ten national-level research laboratories under National Applied Research Laboratories (NARL), headquartered at Hsinchu Science and Industrial Park, Hsinchu City, Taiwan. The NCHC is Taiwan's primary facility for high performance computing (HPC) resources including large-scale computational science and engineering, cluster and grid computing, middleware development, visualization and virtual reality, data storage, networking, and HPC-related training. The NCHC is also responsible for the operation of the 20 Gbit/s Taiwan Advanced Research and Education Network (TWAREN), the national education and research network of Taiwan. The NCHC supports local academia and industry with hardware and software, advanced research and application development, and professional training.

The Oak Ridge Leadership Computing Facility (OLCF), formerly the National Leadership Computing Facility, is a designated user facility operated by Oak Ridge National Laboratory and the Department of Energy. It contains several supercomputers, the largest of which is an HPE OLCF-5 named Frontier, which was ranked 1st on the TOP500 list of world's fastest supercomputers as of June 2022. It is located in Oak Ridge, Tennessee.

The United States Department of Defense High Performance Computing Modernization Program (HPCMP) was initiated in 1992 in response to Congressional direction to modernize the Department of Defense (DoD) laboratories’ high performance computing capabilities. The HPCMP provides supercomputers, a national research network, high-end software tools, a secure environment, and computational science experts that together enable the Defense laboratories and test centers to conduct research, development, test and technology evaluation activities.

The IBM HPC Systems Scientific Computing User Group (ScicomP) is an international organization open to all scientific and technical users of IBM systems. At yearly meetings application scientists and staff from HPC centers present talks about, and discuss, ways to develop efficient and scalable scientific applications. These meetings provide an opportunity to give feedback to IBM that will influence the design of future systems. ScicomP is a not-for-profit group and is not affiliated with IBM Corporation.

Windows HPC Server 2008, released by Microsoft on 22 September 2008, is the successor product to Windows Compute Cluster Server 2003. Like WCCS, Windows HPC Server 2008 is designed for high-end applications that require high performance computing clusters. This version of the server software is claimed to efficiently scale to thousands of cores. It includes features unique to HPC workloads: a new high-speed NetworkDirect RDMA, highly efficient and scalable cluster management tools, a service-oriented architecture (SOA) job scheduler, an MPI library based on open-source MPICH2, and cluster interoperability through standards such as the High Performance Computing Basic Profile (HPCBP) specification produced by the Open Grid Forum (OGF).

Many-task computing (MTC) in computational science is an approach to parallel computing that aims to bridge the gap between two computing paradigms: high-throughput computing (HTC) and high-performance computing (HPC).

<span class="mw-page-title-main">SciNet Consortium</span> Scientific research group between the University of Toronto and local hospitals

SciNet is a consortium of the University of Toronto and affiliated Ontario hospitals. It has received funding from both the federal and provincial government, Faculties at the University of Toronto, and affiliated hospitals.

Exascale computing refers to computing systems capable of calculating at least "1018 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (exaFLOPS)"; it is a measure of supercomputer performance.

A lightweight kernel (LWK) operating system is one used in a large computer with many processor cores, termed a parallel computer.

Supercomputing in India has a history going back to the 1980s. The Government of India created an indigenous development programme as they had difficulty purchasing foreign supercomputers. As of November 2020 when ranking by number of supercomputer systems in the TOP500 list, India is ranked at number 89 in the world, with the PARAM Siddhi-AI being the fastest supercomputer in India.

<span class="mw-page-title-main">Supercomputing in Europe</span> Overview of supercomputing in Europe

Several centers for supercomputing exist across Europe, and distributed access to them is coordinated by European initiatives to facilitate high-performance computing. One such initiative, the HPC Europa project, fits within the Distributed European Infrastructure for Supercomputing Applications (DEISA), which was formed in 2002 as a consortium of eleven supercomputing centers from seven European countries. Operating within the CORDIS framework, HPC Europa aims to provide access to supercomputers across Europe.

<span class="mw-page-title-main">ACM SIGHPC</span>

ACM SIGHPC is the Association for Computing Machinery's Special Interest Group on High Performance Computing, an international community of students, faculty, researchers, and practitioners working on research and in professional practice related to supercomputing, high-end computers, and cluster computing. The organization co-sponsors international conferences related to high performance and scientific computing, including: SC, the International Conference for High Performance Computing, Networking, Storage and Analysis; the Platform for Advanced Scientific Computing (PASC) Conference; Practice and Experience in Advanced Research Computing (PEARC); and PPoPP, the Symposium on Principles and Practice of Parallel Programming.

<span class="mw-page-title-main">European High-Performance Computing Joint Undertaking</span>

The European High-Performance Computing Joint Undertaking is a public-private partnership in High Performance Computing (HPC), enabling the pooling of European Union–level resources with the resources of participating EU Member States and participating associated states of the Horizon Europe and Digital Europe programmes, as well as private stakeholders. The Joint Undertaking has the twin stated aims of developing a pan-European supercomputing infrastructure, and supporting research and innovation activities. Located in Luxembourg City, Luxembourg, the Joint Undertaking started operating in November 2018 under the control of the European Commission and became autonomous in 2020.

The A64FX is a 64-bit ARM architecture microprocessor designed by Fujitsu. The processor is replacing the SPARC64 V as Fujitsu's processor for supercomputer applications. It powers the Fugaku supercomputer, the fastest supercomputer in the world by TOP500 rankings as of June 2020 as well as November 2020, June 2021 and November 2021.