Ideal theory

Last updated

In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings (and this article therefore only considers ideals in commutative rings.)

Contents

Throughout the articles, rings refer to commutative rings. See also the article ideal (ring theory) for basic operations such as sum or products of ideals.

Ideals in a finitely generated algebra over a field

Ideals in a finitely generated algebra over a field (that is, a quotient of a polynomial ring over a field) behave somehow nicer than those in a general commutative ring. First, in contrast to the general case, if is a finitely generated algebra over a field, then the radical of an ideal in is the intersection of all maximal ideals containing the ideal (because is a Jacobson ring). This may be thought of as an extension of Hilbert's Nullstellensatz, which concerns the case when is a polynomial ring.

Topology determined by an ideal

If I is an ideal in a ring A, then it determines the topology on A where a subset U of A is open if, for each x in U,

for some integer . This topology is called the I-adic topology. It is also called an a-adic topology if is generated by an element .

For example, take , the ring of integers and an ideal generated by a prime number p. For each integer , define when , prime to . Then, clearly,

where denotes an open ball of radius with center . Hence, the -adic topology on is the same as the metric space topology given by . As a metric space, can be completed. The resulting complete metric space has a structure of a ring that extended the ring structure of ; this ring is denoted as and is called the ring of p-adic integers.

Ideal class group

In a Dedekind domain A (e.g., a ring of integers in a number field or the coordinate ring of a smooth affine curve) with the field of fractions , an ideal is invertible in the sense: there exists a fractional ideal (that is, an A-submodule of ) such that , where the product on the left is a product of submodules of K. In other words, fractional ideals form a group under a product. The quotient of the group of fractional ideals by the subgroup of principal ideals is then the ideal class group of A.

In a general ring, an ideal may not be invertible (in fact, already the definition of a fractional ideal is not clear). However, over a Noetherian integral domain, it is still possible to develop some theory generalizing the situation in Dedekind domains. For example, Ch. VII of Bourbaki's Algèbre commutative gives such a theory.

The ideal class group of A, when it can be defined, is closely related to the Picard group of the spectrum of A (often the two are the same; e.g., for Dedekind domains).

In algebraic number theory, especially in class field theory, it is more convenient to use a generalization of an ideal class group called an idele class group.

Closure operations

There are several operations on ideals that play roles of closures. The most basic one is the radical of an ideal. Another is the integral closure of an ideal. Given an irredundant primary decomposition , the intersection of 's whose radicals are minimal (don’t contain any of the radicals of other 's) is uniquely determined by ; this intersection is then called the unmixed part of . It is also a closure operation.

Given ideals in a ring , the ideal

is called the saturation of with respect to and is a closure operation (this notion is closely related to the study of local cohomology).

See also tight closure.

Reduction theory

Local cohomology in ideal theory

Local cohomology can sometimes be used to obtain information on an ideal. This section assumes some familiarity with sheaf theory and scheme theory.

Let be a module over a ring and an ideal. Then determines the sheaf on (the restriction to Y of the sheaf associated to M). Unwinding the definition, one sees:

.

Here, is called the ideal transform of with respect to .[ citation needed ]

See also

Related Research Articles

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

This is a glossary of algebraic geometry.

References