Iterative Receiver Design

Last updated
Iterative Receiver Design
Iterative Receiver Design cover.jpg
AuthorHenk Wymeersch
CountryEngland
LanguageEnglish
Subject Receiver Design, Factor graph
Publisher Cambridge University Press
Publication date
2007
Pages272 pages
ISBN 978-0-521-87315-4
OCLC 148865760
518.1 22
LC Class TK5103.7 .W96 2007
Website http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521873150

Iterative Receiver Design is a 2007 engineering book by Henk Wymeersch published by Cambridge University Press. The book provides a framework for developing iterative algorithms for digital receivers, exploiting the power of factor graphs. [1]

Cambridge University Press (CUP) is the publishing business of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the world's oldest publishing house and the second-largest university press in the world. It also holds letters patent as the Queen's Printer.

Chapters

  1. Introduction
  2. Digital communication
  3. Estimation theory and Monte Carlo techniques
  4. Factor graphs and the Sum-Product algorithm
  5. Statistical inference using factor graphs
  6. State-space models
  7. Factor graphs in digital communication
  8. Decoding
  9. Demapping
  10. Equalization: general formulation
  11. Equalization: single-user single-antenna communication
  12. Equalization: multi-antenna communication
  13. Equalization: multi-user communication
  14. Synchronization and channel estimation
  15. Appendices

Related Research Articles

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G mobile communications.

Belief propagation, also known as sum-product message passing, is a message-passing algorithm for performing inference on graphical models, such as Bayesian networks and Markov random fields. It calculates the marginal distribution for each unobserved node, conditional on any observed nodes. Belief propagation is commonly used in artificial intelligence and information theory and has demonstrated empirical success in numerous applications including low-density parity-check codes, turbo codes, free energy approximation, and satisfiability.

In digital signal processing, downsampling and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both terms are used by various authors to describe the entire process, which includes lowpass filtering, or just the part of the process that does not include filtering.  When downsampling (decimation) is performed on a sequence of samples of a signal or other continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate. The decimation factor is usually an integer or a rational fraction greater than one. This factor multiplies the sampling interval or, equivalently, divides the sampling rate. For example, if compact disc audio at 44,100 samples/second is decimated by a factor of 5/4, the resulting sample rate is 35,280. A system component that performs decimation is called a decimator.

Smart antennas are antenna arrays with smart signal processing algorithms used to identify spatial signal signatures such as the direction of arrival (DOA) of the signal, and use them to calculate beamforming vectors which are used to track and locate the antenna beam on the mobile/target. Smart antennas should not be confused with reconfigurable antennas, which have similar capabilities but are single element antennas and not antenna arrays.

Space–time trellis codes (STTCs) are a type of space–time code used in multiple-antenna wireless communications. This scheme transmits multiple, redundant copies of a generalised TCM signal distributed over time and a number of antennas ('space'). These multiple, 'diverse' copies of the data are used by the receiver to attempt to reconstruct the actual transmitted data. For an STC to be used, there must necessarily be multiple transmit antennas, but only a single receive antennas is required; nevertheless multiple receive antennas are often used since the performance of the system is improved by the resulting spatial diversity.

In computing, telecommunication, information theory, and coding theory, an error correction code, sometimes error correcting code, (ECC) is used for controlling errors in data over unreliable or noisy communication channels. The central idea is the sender encodes the message with a redundant in the form of an ECC. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. The redundancy allows the receiver to detect a limited number of errors that may occur anywhere in the message, and often to correct these errors without retransmission. ECC gives the receiver the ability to correct errors without needing a reverse channel to request retransmission of data, but at the cost of a fixed, higher forward channel bandwidth. ECC is therefore applied in situations where retransmissions are costly or impossible, such as one-way communication links and when transmitting to multiple receivers in multicast. For example, in the case of a satellite orbiting around Uranus, a retransmission because of decoding errors can create a delay of 5 hours. ECC information is usually added to mass storage devices to enable recovery of corrupted data, is widely used in modems, and is used on systems where the primary memory is ECC memory.

In the field of wireless communication, macrodiversity is a kind of space diversity scheme using several receiver antennas and/or transmitter antennas for transferring the same signal. The distance between the transmitters is much longer than the wavelength, as opposed to microdiversity where the distance is in the order of or shorter than the wavelength.

Single-carrier FDMA (SC-FDMA) is a frequency-division multiple access scheme. It is also called linearly precoded OFDMA (LP-OFDMA). Like other multiple access schemes, it deals with the assignment of multiple users to a shared communication resource. SC-FDMA can be interpreted as a linearly precoded OFDMA scheme, in the sense that it has an additional DFT processing step preceding the conventional OFDMA processing.

Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.

Multiuser detection deals with demodulation of the mutually interfering digital streams of information that occur in areas such as wireless communications, high-speed data transmission, DSL, satellite communication, digital television, and magnetic recording. It is also being currently investigated for demodulation in low-power inter-chip and intra-chip communication. Multiuser detection encompasses both receiver technologies devoted to joint detection of all the interfering signals or to single-user receivers which are interested in recovering only one user but are robustified against multiuser interference and not just background noise.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

A-VSB or Advanced VSB is a modification of the 8VSB modulation system used for transmission of digital television using the ATSC system. One of the constraints of conventional ATSC transmission is that reliable reception is difficult or impossible when the receiver is moving at speeds associated with normal vehicular traffic. The technology was jointly developed by Samsung and Rohde & Schwarz.

Multi-user MIMO (MU-MIMO) is a set of multiple-input and multiple-output (MIMO) technologies for wireless communication, in which a set of users or wireless terminals, each with one or more antennas, communicate with each other. In contrast, single-user MIMO considers a single multi-antenna transmitter communicating with a single multi-antenna receiver. In a similar way that OFDMA adds multiple access (multi-user) capabilities to OFDM, MU-MIMO adds multiple access (multi-user) capabilities to MIMO. MU-MIMO has been investigated since the beginning of research into multi-antenna communication, including work by Telatar on the capacity of the MU-MIMO uplink.

Bell Laboratories Layered Space-Time

Bell Laboratories Layer Space-Time (BLAST) is a transceiver architecture for offering spatial multiplexing over multiple-antenna wireless communication systems. Such systems have multiple antennas at both the transmitter and the receiver in an effort to exploit the many different paths between the two in a highly-scattering wireless environment. BLAST was developed by Gerard Foschini at Lucent Technologies' Bell Laboratories. By careful allocation of the data to be transmitted to the transmitting antennas, multiple data streams can be transmitted simultaneously within a single frequency band — the data capacity of the system then grows directly in line with the number of antennas. This represents a significant advance on current, single-antenna systems.

MIMO Use of multiple antennas in radio

In radio, multiple-input and multiple-output, or MIMO, is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX (4G), and Long Term Evolution. More recently, MIMO has been applied to power-line communication for 3-wire installations as part of ITU G.hn standard and HomePlug AV2 specification.

Lee Swindlehurst is an electrical engineer who has made contributions in sensor array signal processing for radar and wireless communications, detection and estimation theory, and system identification, and has received many awards in these areas. He is currently a Professor of Electrical Engineering and Computer Science at the University of California at Irvine.

In digital communications, a turbo equalizer is a type of receiver used to receive a message corrupted by a communication channel with intersymbol interference (ISI). It approaches the performance of a maximum a posteriori (MAP) receiver via iterative message passing between a soft-in soft-out (SISO) equalizer and a SISO decoder. It is related to turbo codes in that a turbo equalizer may be considered a type of iterative decoder if the channel is viewed as a non-redundant convolutional code. The turbo equalizer is different from classic a turbo-like code, however, in that the 'channel code' adds no redundancy and therefore can only be used to remove non-gaussian noise.

A software GNSS receiver is a GNSS receiver that has been designed and implemented following the philosophy of Software-defined radio.

Water filling algorithm is a general name given to the ideas in communication systems design and practice for equalization strategies on communications channels. As the name suggests, just as water finds its level even when filled in one part of a vessel with multiple openings, as a consequence of Pascal's law, the amplifier systems in communications network repeaters, or receivers amplify each channel up to the required power level compensating for the channel impairments. See, for example, channel power allocation in MIMO systems.

XPIC

XPIC, or cross-polarization interference cancelling technology, is an algorithm to suppress mutual interference between two received streams in a Polarization-division multiplexing communication system.

References