Liouville's theorem (complex analysis)

Last updated

In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844 [1] ), states that every bounded entire function must be constant. That is, every holomorphic function for which there exists a positive number such that for all is constant. Equivalently, non-constant holomorphic functions on have unbounded images.

Contents

The theorem is considerably improved by Picard's little theorem, which says that every entire function whose image omits two or more complex numbers must be constant.

Proof

This important theorem has several proofs.

A standard analytical proof uses the fact that holomorphic functions are analytic.

Proof

If is an entire function, it can be represented by its Taylor series about 0:

where (by Cauchy's integral formula)

and is the circle about 0 of radius . Suppose is bounded: i.e. there exists a constant such that for all . We can estimate directly

where in the second inequality we have used the fact that on the circle . But the choice of in the above is an arbitrary positive number. Therefore, letting tend to infinity (we let tend to infinity since is analytic on the entire plane) gives for all . Thus and this proves the theorem.

Another proof uses the mean value property of harmonic functions.

Proof [2]

Given two points, choose two balls with the given points as centers and of equal radius. If the radius is large enough, the two balls will coincide except for an arbitrarily small proportion of their volume. Since is bounded, the averages of it over the two balls are arbitrarily close, and so assumes the same value at any two points.

The proof can be adapted to the case where the harmonic function is merely bounded above or below. See Harmonic function#Liouville's theorem.

Corollaries

Fundamental theorem of algebra

There is a short proof of the fundamental theorem of algebra based upon Liouville's theorem. [3]

No entire function dominates another entire function

A consequence of the theorem is that "genuinely different" entire functions cannot dominate each other, i.e. if and are entire, and everywhere, then for some complex number . Consider that for the theorem is trivial so we assume . Consider the function . It is enough to prove that can be extended to an entire function, in which case the result follows by Liouville's theorem. The holomorphy of is clear except at points in . But since is bounded and all the zeroes of are isolated, any singularities must be removable. Thus can be extended to an entire bounded function which by Liouville's theorem implies it is constant.

If f is less than or equal to a scalar times its input, then it is linear

Suppose that is entire and , for . We can apply Cauchy's integral formula; we have that

where is the value of the remaining integral. This shows that is bounded and entire, so it must be constant, by Liouville's theorem. Integrating then shows that is affine and then, by referring back to the original inequality, we have that the constant term is zero.

Non-constant elliptic functions cannot be defined on the complex plane

The theorem can also be used to deduce that the domain of a non-constant elliptic function cannot be . Suppose it was. Then, if and are two periods of such that is not real, consider the parallelogram whose vertices are 0, , , and . Then the image of is equal to . Since is continuous and is compact, is also compact and, therefore, it is bounded. So, is constant.

The fact that the domain of a non-constant elliptic function cannot be is what Liouville actually proved, in 1847, using the theory of elliptic functions. [4] In fact, it was Cauchy who proved Liouville's theorem. [5] [6]

Entire functions have dense images

If is a non-constant entire function, then its image is dense in . This might seem to be a much stronger result than Liouville's theorem, but it is actually an easy corollary. If the image of is not dense, then there is a complex number and a real number such that the open disk centered at with radius has no element of the image of . Define

Then is a bounded entire function, since for all ,

So, is constant, and therefore is constant.

On compact Riemann surfaces

Any holomorphic function on a compact Riemann surface is necessarily constant. [7]

Let be holomorphic on a compact Riemann surface . By compactness, there is a point where attains its maximum. Then we can find a chart from a neighborhood of to the unit disk such that is holomorphic on the unit disk and has a maximum at , so it is constant, by the maximum modulus principle.

Remarks

Let be the one-point compactification of the complex plane . In place of holomorphic functions defined on regions in , one can consider regions in . Viewed this way, the only possible singularity for entire functions, defined on , is the point . If an entire function is bounded in a neighborhood of , then is a removable singularity of , i.e. cannot blow up or behave erratically at . In light of the power series expansion, it is not surprising that Liouville's theorem holds.

Similarly, if an entire function has a pole of order at that is, it grows in magnitude comparably to in some neighborhood of then is a polynomial. This extended version of Liouville's theorem can be more precisely stated: if for sufficiently large, then is a polynomial of degree at most . This can be proved as follows. Again take the Taylor series representation of ,

The argument used during the proof using Cauchy estimates shows that for all ,

So, if , then

Therefore, .

Liouville's theorem does not extend to the generalizations of complex numbers known as double numbers and dual numbers. [8]

See also

Related Research Articles

In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Cauchy's integral theorem</span> Theorem in complex analysis

In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Morera's theorem</span> Integral criterion for holomorphy

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, a Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. The theorem is named for Raymond Paley (1907–1933) and Norbert Wiener (1894–1964). The original theorems did not use the language of distributions, and instead applied to square-integrable functions. The first such theorem using distributions was due to Laurent Schwartz. These theorems heavily rely on the triangle inequality.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

In mathematics, the Borel–Carathéodory theorem in complex analysis shows that an analytic function may be bounded by its real part. It is an application of the maximum modulus principle. It is named for Émile Borel and Constantin Carathéodory.

<span class="mw-page-title-main">Zeta function universality</span>

In mathematics, the universality of zeta functions is the remarkable ability of the Riemann zeta function and other similar functions to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.

In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

In mathematics, in the area of complex analysis, Nachbin's theorem is commonly used to establish a bound on the growth rates for an analytic function. This article provides a brief review of growth rates, including the idea of a function of exponential type. Classification of growth rates based on type help provide a finer tool than big O or Landau notation, since a number of theorems about the analytic structure of the bounded function and its integral transforms can be stated. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, given below.

<span class="mw-page-title-main">Antiderivative (complex analysis)</span> Concept in complex analysis

In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g. More precisely, given an open set in the complex plane and a function the antiderivative of is a function that satisfies .

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

References

  1. Solomentsev, E.D.; Stepanov, S.A.; Kvasnikov, I.A. (2001) [1994], "Liouville theorems", Encyclopedia of Mathematics , EMS Press
  2. Nelson, Edward (1961). "A proof of Liouville's theorem". Proceedings of the American Mathematical Society. 12 (6): 995. doi: 10.1090/S0002-9939-1961-0259149-4 .
  3. Benjamin Fine; Gerhard Rosenberger (1997). The Fundamental Theorem of Algebra. Springer Science & Business Media. pp. 70–71. ISBN   978-0-387-94657-3.
  4. Liouville, Joseph (1847), "Leçons sur les fonctions doublement périodiques", Journal für die Reine und Angewandte Mathematik (published 1879), vol. 88, pp. 277–310, ISSN   0075-4102, archived from the original on 2012-07-11
  5. Cauchy, Augustin-Louis (1844), "Mémoires sur les fonctions complémentaires", Œuvres complètes d'Augustin Cauchy, 1, vol. 8, Paris: Gauthiers-Villars (published 1882)
  6. Lützen, Jesper (1990), Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics, Studies in the History of Mathematics and Physical Sciences, vol. 15, Springer-Verlag, ISBN   3-540-97180-7
  7. a concise course in complex analysis and Riemann surfaces, Wilhelm Schlag, corollary 4.8, p.77 http://www.math.uchicago.edu/~schlag/bookweb.pdf Archived 2017-08-30 at the Wayback Machine
  8. Denhartigh, Kyle; Flim, Rachel (15 January 2017). "Liouville theorems in the Dual and Double Planes". Rose-Hulman Undergraduate Mathematics Journal. 12 (2).