Listing number

Last updated

In mathematics, a Listing number of a topological space is one of several topological invariants introduced by the 19th-century mathematician Johann Benedict Listing and later given this name by Charles Sanders Peirce. Unlike the later invariants given by Bernhard Riemann, the Listing numbers do not form a complete set of invariants: two different two-dimensional manifolds may have the same Listing numbers as each other. [1]

In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods. The definition of a topological space relies only upon set theory and is the most general notion of a mathematical space that allows for the definition of concepts such as continuity, connectedness, and convergence. Other spaces, such as manifolds and metric spaces, are specializations of topological spaces with extra structures or constraints. Being so general, topological spaces are a central unifying notion and appear in virtually every branch of modern mathematics. The branch of mathematics that studies topological spaces in their own right is called point-set topology or general topology.

Johann Benedict Listing German mathematician

Johann Benedict Listing was a German mathematician.

Charles Sanders Peirce American philosopher, logician, mathematician, and scientist

Charles Sanders Peirce was an American philosopher, logician, mathematician, and scientist who is sometimes known as "the father of pragmatism". He was educated as a chemist and employed as a scientist for thirty years. Today he is appreciated largely for his contributions to logic, mathematics, philosophy, scientific methodology, semiotics, and for his founding of pragmatism.

There are four Listing numbers associated with a space. [2] The smallest Listing number counts the number of connected components of a space, and is thus equivalent to the zeroth Betti number. [3]

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces, the sequence of Betti numbers is 0 from some point onward, and they are all finite.

Related Research Articles

Equivalence class mathematical concept

In mathematics, when the elements of some set S have a notion of equivalence defined on them, then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if and only if a and b are equivalent.

Polyhedron solid in three dimensions with flat faces

In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron.

Topology Branch of mathematics

In mathematics, topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not tearing or gluing.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space which is also a topological space, thereby admitting a notion of continuity. More specifically, its topological space has a uniform topological structure, allowing a notion of uniform convergence.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

Knot theory study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined together so that it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R3. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of R3 upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.

Knot invariant function of a knot that takes the same value for equivalent knots

In the mathematical field of knot theory, a knot invariant is a quantity defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers, but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory. Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics.

Benjamin Peirce American mathematician

Benjamin Peirce (;) FRSFor HFRSE April 4, 1809 – October 6, 1880) was an American mathematician who taught at Harvard University for approximately 50 years. He made contributions to celestial mechanics, statistics, number theory, algebra, and the philosophy of mathematics.

In algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer n ≥ 1. That is,

Manifold topological space that at each point resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. In this more precise terminology, a manifold is referred to as an n-manifold.

In physics, a topological quantum number is any quantity, in a physical theory, that takes on only one of a discrete set of values, due to topological considerations. Most commonly, topological quantum numbers are topological invariants associated with topological defects or soliton-type solutions of some set of differential equations modeling a physical system, as the solitons themselves owe their stability to topological considerations. The specific "topological considerations" are usually due to the appearance of the fundamental group or a higher-dimensional homotopy group in the description of the problem, quite often because the boundary, on which the boundary conditions are specified, has a non-trivial homotopy group that is preserved by the differential equations. The topological quantum number of a solution is sometimes called the winding number of the solution, or, more precisely, it is the degree of a continuous mapping.

An entitative graph is an element of the diagrammatic syntax for logic that Charles Sanders Peirce developed under the name of qualitative logic beginning in the 1880s, taking the coverage of the formalism only as far as the propositional or sentential aspects of logic are concerned. See 3.468, 4.434, and 4.564 in Peirce's Collected Papers.

Hyperbolic volume normalized hyperbolic volume of the complement of a hyperbolic knot

In the mathematical field of knot theory, the hyperbolic volume of a hyperbolic link is the volume of the link's complement with respect to its complete hyperbolic metric. The volume is necessarily a finite real number, and is a topological invariant of the link. As a link invariant, it was first studied by William Thurston in connection with his geometrization conjecture.

The propensity theory of probability is one interpretation of the concept of probability. Theorists who adopt this interpretation think of probability as a physical propensity, or disposition, or tendency of a given type of physical situation to yield an outcome of a certain kind, or to yield a long run relative frequency of such an outcome.

In topology and related areas of mathematics, a subset A of a topological space X is called dense if every point x in X either belongs to A or is a limit point of A; that is, the closure of A is constituting the whole set X. Informally, for every point in X, the point is either in A or arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it.

Charles Santiago Sanders Peirce was the adopted name of Charles Sanders Peirce, an American philosopher, logician, mathematician, and scientist. Peirce's name appeared in print as "Charles Santiago Peirce" as early as 1890. Starting in 1906 he used "Santiago" in many of his own articles. There is no well-documented explanation of why Peirce adopted the middle name "Santiago" but speculations and beliefs of contemporaries and scholars focused on his gratitude to his old friend William James and more recently on Peirce's second wife Juliette.

References

  1. Peirce, Charles Sanders (1992), Reasoning and the Logic of Things: The Cambridge Conferences Lectures of 1898, Harvard University Press, Footnote 70, pp. 279–280, ISBN   9780674749672 .
  2. Peirce, pp. 99–102.
  3. Peirce, p. 99.