Logical address

Last updated

In computing, a logical address is the address at which an item (memory cell, storage element, network host) appears to reside from the perspective of an executing application program.

A logical address may be different from the physical address due to the operation of an address translator or mapping function. Such mapping functions may be, in the case of a computer memory architecture, a memory management unit (MMU) between the CPU and the memory bus.

Computer memory

The physical address of computer memory banks may be mapped to different logical addresses for various purposes.

In a system supporting virtual memory, there may actually not be any physical memory mapped to a logical address until an access is attempted. The access triggers special functions of the operating system which reprogram the MMU to map the address to some physical memory, perhaps writing the old contents of that memory to disk and reading back from disk what the memory should contain at the new logical address. In this case, the logical address may be referred to as a virtual address.

See also

Related Research Articles

<span class="mw-page-title-main">Virtual memory</span> Computer memory management technique

In computing, virtual memory, or virtual storage, is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" which "creates the illusion to users of a very large (main) memory".

<span class="mw-page-title-main">Memory management unit</span> Hardware translating virtual addresses to physical address

A memory management unit (MMU), sometimes called paged memory management unit (PMMU), is a computer hardware unit that examines all memory references on the memory bus, translating these requests, known as virtual memory addresses, into physical addresses in main memory.

In computer operating systems, memory paging is a memory management scheme by which a computer stores and retrieves data from secondary storage for use in main memory. In this scheme, the operating system retrieves data from secondary storage in same-size blocks called pages. Paging is an important part of virtual memory implementations in modern operating systems, using secondary storage to let programs exceed the size of available physical memory.

Logical block addressing (LBA) is a common scheme used for specifying the location of blocks of data stored on computer storage devices, generally secondary storage systems such as hard disk drives. LBA is a particularly simple linear addressing scheme; blocks are located by an integer index, with the first block being LBA 0, the second LBA 1, and so on.

In computing, an address space defines a range of discrete addresses, each of which may correspond to a network host, peripheral device, disk sector, a memory cell or other logical or physical entity.

A translation lookaside buffer (TLB) is a memory cache that stores the recent translations of virtual memory to physical memory. It is used to reduce the time taken to access a user memory location. It can be called an address-translation cache. It is a part of the chip's memory-management unit (MMU). A TLB may reside between the CPU and the CPU cache, between CPU cache and the main memory or between the different levels of the multi-level cache. The majority of desktop, laptop, and server processors include one or more TLBs in the memory-management hardware, and it is nearly always present in any processor that utilizes paged or segmented virtual memory.

<span class="mw-page-title-main">Memory address</span> Reference to a specific memory location

In computing, a memory address is a reference to a specific memory location used at various levels by software and hardware. Memory addresses are fixed-length sequences of digits conventionally displayed and manipulated as unsigned integers. Such numerical semantic bases itself upon features of CPU, as well upon use of the memory like an array endorsed by various programming languages.

In computing, mmap(2) is a POSIX-compliant Unix system call that maps files or devices into memory. It is a method of memory-mapped file I/O. It implements demand paging because file contents are not immediately read from disk and initially use no physical RAM at all. The actual reads from disk are performed after a specific location is accessed, in a lazy manner. After the mapping is no longer needed, the pointers must be unmapped with munmap(2). Protection information—for example, marking mapped regions as executable—can be managed using mprotect(2), and special treatment can be enforced using madvise(2).

In computer science, thrashing occurs in a system with virtual memory when a computer's real storage resources are overcommitted, leading to a constant state of paging and page faults, slowing most application-level processing. This causes the performance of the computer to degrade or collapse. The situation can continue indefinitely until the user closes some running applications or the active processes free up additional virtual memory resources.

<span class="mw-page-title-main">Page table</span> Data structure that maps virtual addresses with physical addresses

A page table is a data structure used by a virtual memory system in a computer to store mappings between virtual addresses and physical addresses. Virtual addresses are used by the program executed by the accessing process, while physical addresses are used by the hardware, or more specifically, by the random-access memory (RAM) subsystem. The page table is a key component of virtual address translation that is necessary to access data in memory. The page table is set up by the computer's operating system, and may be read and written during the virtual address translation process by the memory management unit or by low-level system software or firmware.

A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost to access data from the main memory. A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a hierarchy of multiple cache levels, with different instruction-specific and data-specific caches at level 1. The cache memory is typically implemented with static random-access memory (SRAM), in modern CPUs by far the largest part of them by chip area, but SRAM is not always used for all levels, or even any level, sometimes some latter or all levels are implemented with eDRAM.

In computing, a page fault is an exception that the memory management unit (MMU) raises when a process accesses a memory page without proper preparations. Accessing the page requires a mapping to be added to the process's virtual address space. Besides, the actual page contents may need to be loaded from a backing store, such as a disk. The MMU detects the page fault, but the operating system's kernel handles the exception by making the required page accessible in the physical memory or denying an illegal memory access.

In Linux, Logical Volume Manager (LVM) is a device mapper framework that provides logical volume management for the Linux kernel. Most modern Linux distributions are LVM-aware to the point of being able to have their root file systems on a logical volume.

In computer science, storage virtualization is "the process of presenting a logical view of the physical storage resources to" a host computer system, "treating all storage media in the enterprise as a single pool of storage."

<span class="mw-page-title-main">Physical address</span>

In computing, a physical address, is a memory address that is represented in the form of a binary number on the address bus circuitry in order to enable the data bus to access a particular storage cell of main memory, or a register of memory-mapped I/O device.

<span class="mw-page-title-main">Input–output memory management unit</span> Configuration in computing

In computing, an input–output memory management unit (IOMMU) is a memory management unit (MMU) connecting a direct-memory-access–capable (DMA-capable) I/O bus to the main memory. Like a traditional MMU, which translates CPU-visible virtual addresses to physical addresses, the IOMMU maps device-visible virtual addresses to physical addresses. Some units also provide memory protection from faulty or malicious devices.

A memory-mapped file is a segment of virtual memory that has been assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This resource is typically a file that is physically present on disk, but can also be a device, shared memory object, or other resource that an operating system can reference through a file descriptor. Once present, this correlation between the file and the memory space permits applications to treat the mapped portion as if it were primary memory.

In computer science, memory virtualization decouples volatile random access memory (RAM) resources from individual systems in the data centre, and then aggregates those resources into a virtualized memory pool available to any computer in the cluster. The memory pool is accessed by the operating system or applications running on top of the operating system. The distributed memory pool can then be utilized as a high-speed cache, a messaging layer, or a large, shared memory resource for a CPU or a GPU application.

<span class="mw-page-title-main">Motorola 68451</span>

The MC68451 is a Motorola Memory Management Unit (MMU), which was primarily used in conjunction with the Motorola MC68010 microprocessor.

<span class="mw-page-title-main">Shared memory</span> Computer memory that can be accessed by multiple processes

In computer science, shared memory is memory that may be simultaneously accessed by multiple programs with an intent to provide communication among them or avoid redundant copies. Shared memory is an efficient means of passing data between programs. Depending on context, programs may run on a single processor or on multiple separate processors.