Nuclear Control Institute

Last updated

The Nuclear Control Institute is a research and advocacy center for preventing nuclear proliferation and nuclear terrorism. The non-profit organization was founded by Paul Leventhal in 1981. It went under a reorganization in 2003 to make it a web-based program. The institute is supported by the donations of philanthropic foundations and individuals.

Nuclear proliferation spread of nuclear weapons to nations not recognized as "Nuclear Weapon States"

Nuclear proliferation is the spread of nuclear weapons, fissionable material, and weapons-applicable nuclear technology and information to nations not recognized as "Nuclear Weapon States" by the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), commonly known as the Non-Proliferation Treaty or NPT. Proliferation has been opposed by many nations with and without nuclear weapons, as governments fear that more countries with nuclear weapons will increase the possibility of nuclear warfare, de-stabilize international or regional relations, or infringe upon the national sovereignty of states.

Nuclear terrorism terrorism involving nuclear weapons

Nuclear terrorism refers to any person or persons who detonate a nuclear weapon in an act of terrorism. Some definitions of nuclear terrorism include the sabotage of a nuclear facility and/or the detonation of a radiological device, colloquially termed a dirty bomb, but consensus is lacking. In legal terms, nuclear terrorism is an offense committed if a person unlawfully and intentionally “uses in any way radioactive material … with the intent to cause death or serious bodily injury; or with the intent to cause substantial damage to property or to the environment; or with the intent to compel a natural or legal person, an international organization or a State to do or refrain from doing an act”, according to the 2005 United Nations International Convention for the Suppression of Acts of Nuclear Terrorism.

World Wide Web System of interlinked hypertext documents accessed over the Internet

The World Wide Web (WWW), commonly known as the Web, is an information space where documents and other web resources are identified by Uniform Resource Locators, which may be interlinked by hypertext, and are accessible over the Internet. The resources of the WWW may be accessed by users by a software application called a web browser.

The Nuclear Control Institute is particularly focused on the elimination of plutonium and highly enriched uranium, which can be used to create nuclear weapons, from nuclear power plants and research reactors, and preventing plutonium and highly enriched uranium from dismantled nuclear weapons from being disposed of in commercial reactors. This means that they are strongly opposed to the use of mixed oxide fuel.

Plutonium Chemical element with atomic number 94

Plutonium is a radioactive chemical element with symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous.

Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Natural uranium is 99.284% 238U isotope, with 235U only constituting about 0.711% of its mass. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.

Nuclear weapon Explosive device that derives its destructive force from nuclear reactions

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or from a combination of fission and fusion reactions. Both bomb types release large quantities of energy from relatively small amounts of matter. The first test of a fission ("atomic") bomb released an amount of energy approximately equal to 20,000 tons of TNT (84 TJ). The first thermonuclear ("hydrogen") bomb test released energy approximately equal to 10 million tons of TNT (42 PJ). A thermonuclear weapon weighing little more than 2,400 pounds (1,100 kg) can release energy equal to more than 1.2 million tons of TNT (5.0 PJ). A nuclear device no larger than traditional bombs can devastate an entire city by blast, fire, and radiation. Since they are weapons of mass destruction, the proliferation of nuclear weapons is a focus of international relations policy.

Tom Clements is the executive director.

See also

Related Research Articles

Nuclear reactor device to initiate and control a sustained nuclear chain reaction

A nuclear reactor, formerly known as an atomic pile, is a device used to initiate and control a self-sustained nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. Research reactors are run only for research. As of early 2019, the IAEA reports there are 454 nuclear power reactors and 226 nuclear research reactors in operation around the world.

Nuclear fuel cycle Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium (LEU) fuel used in the light water reactors that predominate nuclear power generation. For example, a mixture of 7% plutonium and 93% natural uranium reacts similarly, although not identically, to LEU fuel. MOX usually consists of two phases, UO2 and PuO2, and/or a single phase solid solution (U,Pu)O2. The content of PuO2 may vary from 1.5 wt.% to 25–30 wt.% depending on the type of nuclear reactor. Although MOX fuel can be used in thermal reactors to provide energy, efficient fission of plutonium in MOX can only be achieved in fast reactors.

Uranium-235 isotope of uranium

Uranium-235 (235U) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope with a primordial nuclide found in significant quantity in nature.

Nuclear fuel material that can be used in nuclear fission or fusion to derive nuclear energy

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.

Plutonium-239 isotope of plutonium

Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 has also been used. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.

Special nuclear material nuclear material

Special nuclear material (SNM) is a term used by the Nuclear Regulatory Commission of the United States to classify fissile materials. The NRC divides special nuclear material into three main categories, according to the risk and potential for its direct use in a clandestine nuclear weapon or for its use in the production of nuclear material for use in a nuclear weapon.

Weapons-grade nuclear material substance that is pure enough to be used to make a weapon

Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon or has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.

In nuclear power technology, burnup is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured both as the fraction of fuel atoms that underwent fission in %FIMA and as the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.

Reactor-grade plutonium/RGPu is the isotopic grade of plutonium that is found in spent nuclear fuel after the primary fuel, that of Uranium-235 that a nuclear power reactor uses, has burnt up. The Uranium-238 from which most of the plutonium isotopes derive, by neutron capture, is frequently found alongside the U-235 fuel in civilian reactors, in the form of Low enriched uranium.

IR-40

IR-40 is an Iranian 40 megawatt (thermal) heavy water reactor under construction near Arak, adjacent to the 1990s era Arak Heavy Water Production Plant. Civil works for the construction began in October 2004. It was initially planned that the reactor would begin nuclear operations in 2014.

Project-706

Project-706, also known as Project-726 was a codename of a project to develop Pakistan's first atomic bomb using uranium. At the same time, Pakistani nuclear technology scientists and engineers gained expertise in the use of reactor-grade plutonium and successfully produced weapons grade plutonium by the early 1980s.

Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium actually makes up the bulk of the material separated during reprocessing. Commercial LWR spent nuclear fuel contains on average only four percent plutonium, minor actinides and fission products by weight. Reuse of reprocessed uranium has not been common because of low prices in the uranium market of recent decades, and because it contains undesirable isotopes of uranium.

Pakistan Atomic Research Reactor

The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.

Mexico and weapons of mass destruction

Mexico is one of the few countries which has technical capabilities to manufacture nuclear weapons. However it has renounced them and pledged to only use its nuclear technology for peaceful purposes following the Treaty of Tlatelolco in 1968. In the 1970s Mexico's national institute for nuclear research successfully achieved the creation of highly enriched uranium which is used in nuclear power plants and in the construction of nuclear weapons. However the country agreed in 2012 to downgrade the high enriched uranium used on its nuclear power plants to low enriched uranium, the process was realised with the assistance of the International Atomic Energy Agency. It is unknown if Mexico ever created or possessed nuclear or any other kind of mass destruction weapons.

A pressurized heavy-water reactor (PHWR) is a nuclear reactor, commonly using natural uranium as its fuel, that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. The heavy water coolant is kept under pressure, allowing it to be heated to higher temperatures without boiling, much as in a pressurized water reactor. While heavy water is significantly more expensive than ordinary light water, it creates greatly enhanced neutron economy, allowing the reactor to operate without fuel-enrichment facilities (offsetting the additional expense of the heavy water) and enhancing the ability of the reactor to make use of alternate fuel cycles. At the beginning of 2001, 31 heavy water cooled and moderated nuclear power plants were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors.

The Danube Program was a secret Romanian military project to develop their own nuclear weapons. The project began in 1981, and lasted until 1989.

Siberian Chemical Combine

The Siberian Chemical Combine was established in 1953 in Tomsk-7 now known as Seversk, in the Tomsk Region as a single complex of the nuclear technological cycle for the creation of nuclear weapons components based on fissile materials. It is a subsidiary of TVEL.

References