Praspel

Last updated
Praspel
Paradigm contract
Developer Ivan Enderlin, Frédéric Dadeau, Abdallah Ben Othman, Alain Giorgetti, Fabrice Bouquet
OS all
License New BSD License
Website hoa-project.net
Major implementations
PHP
Influenced by
JML, ACSL

Praspel (PHP Realistic Annotation and Specification Language) is a formal specification language for PHP. It is based on the design-by-contract paradigm and uses preconditions, postconditions, invariants etc. Specifications are written in the comments of the PHP code (always accessible). Praspel is used for manual or automatic software validation and verification, thanks to realistic domains.

Bibliography


Related Research Articles

In computer science, static program analysis is the analysis of computer programs performed without executing them, in contrast with dynamic program analysis, which is performed on programs during their execution.

Software testing is the act of examining the artifacts and the behavior of the software under test by validation and verification. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation. Test techniques include, but are not necessarily limited to:

<span class="mw-page-title-main">Design by contract</span> Approach for designing software

Design by contract (DbC), also known as contract programming, programming by contract and design-by-contract programming, is an approach for designing software.

In computer science, formal methods are mathematically rigorous techniques for the specification, development, analysis, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analysis can contribute to the reliability and robustness of a design.

In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification is a key incentive for formal specification of systems, and is at the core of formal methods. It represents an important dimension of analysis and verification in electronic design automation and is one approach to software verification. The use of formal verification enables the highest Evaluation Assurance Level (EAL7) in the framework of common criteria for computer security certification.

In software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle. In simple terms, software verification is: "Assuming we should build X, does our software achieve its goals without any bugs or gaps?" On the other hand, software validation is: "Was X what we should have built? Does X meet the high-level requirements?"

<span class="mw-page-title-main">Model-based testing</span>

Model-based testing is an application of model-based design for designing and optionally also executing artifacts to perform software testing or system testing. Models can be used to represent the desired behavior of a system under test (SUT), or to represent testing strategies and a test environment. The picture on the right depicts the former approach.

Software quality assurance (SQA) is a means and practice of monitoring all software engineering processes, methods, and work products to ensure compliance against defined standards. It may include ensuring conformance to standards or models, such as ISO/IEC 9126, SPICE or CMMI.

In computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.

In software development, functional testing is a quality assurance (QA) process and a type of black-box testing that bases its test cases on the specifications of the software component under test. Functions are tested by feeding them input and examining the output, and internal program structure is rarely considered. Functional software testing is conducted to evaluate the compliance of a system or component with specified functional requirements. Functional testing usually describes what the system does.

Verification and validation are independent procedures that are used together for checking that a product, service, or system meets requirements and specifications and that it fulfills its intended purpose. These are critical components of a quality management system such as ISO 9000. The words "verification" and "validation" are sometimes preceded with "independent", indicating that the verification and validation is to be performed by a disinterested third party. "Integration verification and validation" can be abbreviated as "IV&V".

Web testing is software testing that focuses on web applications. Complete testing of a web-based system before going live can help address issues before the system is revealed to the public. Issues may include the security of the web application, the basic functionality of the site, its accessibility to disabled and fully able users, its ability to adapt to the multitude of desktops, devices, and operating systems, as well as readiness for expected traffic and number of users and the ability to survive a massive spike in user traffic, both of which are related to load testing.

In computing, software engineering, and software testing, a test oracle is a mechanism for determining whether a test has passed or failed. The use of oracles involves comparing the output(s) of the system under test, for a given test-case input, to the output(s) that the oracle determines that product should have. The term "test oracle" was first introduced in a paper by William E. Howden. Additional work on different kinds of oracles was explored by Elaine Weyuker.

Spec Explorer is a Model-Based Testing (MBT) tool from Microsoft. It extends the Visual Studio Integrated Development Environment with the ability to define a model describing the expected behavior of a software system. From these models, the tool can generate tests automatically for execution within Visual Studio's own testing framework, or many other unit testing frameworks.

Metamorphic testing (MT) is a property-based software testing technique, which can be an effective approach for addressing the test oracle problem and test case generation problem. The test oracle problem is the difficulty of determining the expected outcomes of selected test cases or to determine whether the actual outputs agree with the expected outcomes.

<span class="mw-page-title-main">Jeff Offutt</span> American academic computer scientist

Jeff Offutt is a professor of Software Engineering at George Mason University. His primary interests are software testing and analysis, web software engineering, and software evolution and change-impact analysis.

PragmaDev Studio is a modeling and testing software tool introduced by PragmaDev in 2002 dedicated to the specification of communicating systems. It was initially called Real Time Developer Studio or RTDS. Its primary objective was to support SDL-RT modeling technology. Since V5.0 launched on October 7, 2015 RTDS is called PragmaDev Studio, and it is organized in four independent modules: Specifier, Developer, Tester and Tracer. V5.1 launched on November 29, 2016 introduces a freemium licensing model.

Lori L. Pollock is an American Computer Scientist noted for her research on software analysis and testing, green software engineering and compiler optimization.

EvoSuite is a tool that automatically generates unit tests for Java software. EvoSuite uses an evolutionary algorithm to generate JUnit tests. EvoSuite can be run from the command line, and it also has plugins to integrate it in Maven, IntelliJ and Eclipse. EvoSuite has been used on more than a hundred open-source software and several industrial systems, finding thousands of potential bugs.

Automatic bug-fixing is the automatic repair of software bugs without the intervention of a human programmer. It is also commonly referred to as automatic patch generation, automatic bug repair, or automatic program repair. The typical goal of such techniques is to automatically generate correct patches to eliminate bugs in software programs without causing software regression.