Pratt & Whitney JT12

Last updated
JT12
Pratt & Whitney JT12 Cutaway.jpg
A Cutaway JT12A Turbojet
Type Turbojet
National originUnited States
Manufacturer Pratt & Whitney
First run1957
Major applications North American Sabreliner
Number built800+ [1]
Variants Pratt & Whitney T73

The Pratt & Whitney JT12, (US military designation J60) is a small turbojet engine. The Pratt & Whitney T73 (Pratt & Whitney JFTD12) is a related turboshaft engine. [2]

Contents

Design and development

The J60 conception and project design began in July 1957 at United Aircraft of Canada (now Pratt & Whitney Canada) in Montreal. The project design details were transferred to the main P&W company in East Hartford and in May 1958, the first prototype, with military designation YJ60-P-1 commenced testing.

Flight tests were completed in early 1959; followed by the delivery of the new JT12A-5 engines in July 1959. These were for the two Canadair CL-41 prototype trainers with a rating of 12.9 kN (2,900 lb st). The modified JT12A-3 turbojets with a basic rating of 14.69 kN (3,300 lb st) were tested in the two Lockheed XV-4A Hummingbird VTOL research aircraft. The next version, JT12A-21, had an afterburner which delivered a maximum thrust of 17.91 kN (4,025 lb st).

Variants

Data from Janes [3]
YJ60-P-1
prototype
J60-P-3
J60-P-3A
J60-P-4
J60-P-5
J60-P-6
J60-P-9
T73
Military designation of the Pratt & Whitney JFTD12 free power turbine turboshaft version of the J60.
JT12A-3LH
JT12A-5
(J60-P-3 / -3A / -5 / -6 / -9) Take-off ratings from 2,900 lbf (12.9 kN) to 3,001 lbf (13.35 kN).
JT12A-6
Essentially similar to the -5
JT12A-6A
JT12A-7
(J60-P-4) up-rated to 3,300 lbf (15 kN)
JT12A-8
JT12A-8A
JT12A-21
An after-burning version developing 4,023 lbf (18 kN) thrust wet.
FT12
Turboshaft versions for marine use.
JFTD12
Company designation of the Pratt & Whitney T73 free power turbine turbo-shaft version of the J60.

Applications

Civilian (JT12)

Military (J60)

Specifications (JT12A-8A)

Data from Aircraft engines of the World 1966/67 [4]

General characteristics

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">BMW 003</span> Early German axial turbojet engine

The BMW 003 is an early axial turbojet engine produced by BMW AG in Germany during World War II. The 003 and the Junkers Jumo 004 were the only German turbojet engines to reach production during World War II.

<span class="mw-page-title-main">North American T-2 Buckeye</span> Jet powered Training aircraft

The North American T-2 Buckeye was the United States Navy's intermediate training aircraft, intended to introduce U.S. Navy and U.S. Marine Corps student naval aviators and student naval flight officers to jets. It entered service in 1959, beginning the replacement process of the Lockheed T2V SeaStar, and was itself replaced by the McDonnell Douglas T-45 Goshawk in 2008.

<span class="mw-page-title-main">Pratt & Whitney JT3D</span> Family of turbofan aircraft engines

The Pratt & Whitney JT3D is an early turbofan aircraft engine derived from the Pratt & Whitney JT3C. It was first run in 1958 and was first flown in 1959 under a B-45 Tornado test aircraft. Over 8,000 JT3Ds were produced between 1959 and 1985. Most JT3D engines still in service today are used on military aircraft, where the engine is referred to by its US military designation of TF33.

<span class="mw-page-title-main">Pratt & Whitney F119</span> American low-bypass turbofan engine for the F-22 Raptor

The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

<span class="mw-page-title-main">Pratt & Whitney J57</span> Turbojet engine

The Pratt & Whitney J57 is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 was the first 10,000 lbf (45 kN) thrust class engine in the United States. It was also the first two-spool turbojet to run, a few months before the similar Bristol Olympus in the UK.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.

<span class="mw-page-title-main">Pratt & Whitney J75</span> Turbojet engine

The Pratt & Whitney J75 is an axial-flow turbojet engine first flown in 1955. A two-spool design in the 17,000 lbf (76 kN) thrust class, the J75 was essentially the bigger brother of the Pratt & Whitney J57 (JT3C). It was known in civilian service as the JT4A, and in a variety of stationary roles as the GG4 and FT4.

<span class="mw-page-title-main">Rolls-Royce Nene</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.41 Nene is a 1940s British centrifugal compressor turbojet engine. The Nene was a complete redesign, rather than a scaled-up Rolls-Royce Derwent, with a design target of 5,000 lbf (22 kN), making it the most powerful engine of its era. First run in 1944, it was Rolls-Royce's third jet engine to enter production, and first ran less than 6 months from the start of design. It was named after the River Nene in keeping with the company's tradition of naming its jet engines after rivers.

<span class="mw-page-title-main">Pratt & Whitney J52</span> Turbojet aircraft engine

The Pratt & Whitney J52 is an axial-flow dual-spool turbojet engine originally designed for the United States Navy, in the 40 kN class. It powered the A-6 Intruder and the AGM-28 Hound Dog cruise missile. As of 2021 the engine was still in use in models of the A-4 Skyhawk.

<span class="mw-page-title-main">North American Sabreliner</span> American business jet

The North American Sabreliner, later sold as the Rockwell Sabreliner, is an American mid-sized business jet developed by North American Aviation. It was offered to the United States Air Force (USAF) in response to its Utility Trainer Experimental (UTX) program. It was named "Sabreliner" due to the similarity of the wing and tail to North American's F-86 Sabre jet fighter. Military variants, designated T-39 Sabreliner, were used by the USAF, United States Navy (USN), and United States Marine Corps (USMC) after the USAF placed an initial order in 1959. The Sabreliner was also developed into a commercial variant.

<span class="mw-page-title-main">Allison J33</span>

The General Electric/Allison J33 is an American centrifugal-flow jet engine, a development of the General Electric J31, enlarged to produce significantly greater thrust, starting at 4,000 lbf (18 kN) and ending at 4,600 lbf (20 kN) with an additional low-altitude boost to 5,400 lbf (24 kN) with water-alcohol injection.

<span class="mw-page-title-main">General Electric YF120</span> American fighter variable-cycle turbofan engine

The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.

<span class="mw-page-title-main">Lockheed XV-4 Hummingbird</span> American experimental VTOL aircraft

The Lockheed XV-4 Hummingbird was a U.S. Army project to demonstrate the feasibility of using VTOL for a surveillance aircraft carrying target-acquisition and sensory equipment. It was designed and built by the Lockheed Corporation in the 1960s, one of many attempts to produce a V/STOL vertical take off/landing jet. Both prototype aircraft were destroyed in accidents.

<span class="mw-page-title-main">Westinghouse J40</span>

The Westinghouse J40 was an early high-performance afterburning turbojet engine designed by Westinghouse Aviation Gas Turbine Division starting in 1946 to a US Navy Bureau of Aeronautics (BuAer) request. BuAer intended to use the design in several fighter aircraft and a bomber. However, while an early low-power design was successful, attempts to scale it up to its full design power failed, and the design was finally abandoned, deemed a "fiasco" and a "flop".

<span class="mw-page-title-main">Lockheed XH-51</span> 1962 experimental helicopter series by Lockheed

The Lockheed XH-51 was an American single-engine experimental helicopter designed by Lockheed Aircraft, utilizing a rigid rotor and retractable skid landing gear. The XH-51 was selected as the test vehicle for a joint research program conducted by the United States Army and United States Navy to explore rigid rotor technology.

<span class="mw-page-title-main">Pratt & Whitney J48</span>

The Pratt & Whitney J48 is a turbojet engine developed by Pratt & Whitney as a license-built version of the Rolls-Royce Tay. The Tay/J48 was an enlarged development of the Rolls-Royce Nene.

<span class="mw-page-title-main">Pratt & Whitney T73</span> Turboshaft engine

The Pratt & Whitney T73 is a turboshaft engine. Based on the JT12A, the T73 powered the Sikorsky CH-54 Tarhe and its civil counterpart Sikorsky S-64 Skycrane flying crane heavy-lift helicopters. Turboshaft versions for naval use are known as the FT12.

The Republic SD-4 Swallow was an early high-speed reconnaissance drone developed by Republic Aviation for the United States Army. Intended for use by the U.S. Army Signal Corps to target tactical ballistic missiles, it was cancelled before the first prototype could be completed, and did not see operational service.

<span class="mw-page-title-main">Fairchild SD-5 Osprey</span> Type of aircraft

The Fairchild SD-5 Osprey was an early high-speed reconnaissance drone developed by Fairchild Aircraft for the United States Army. Intended for use by the U.S. Army Signal Corps to gather targeting information for tactical ballistic missiles, it was cancelled before the first prototype could be completed, and did not see operational service.

References

  1. Connors, p.285
  2. Greg Goebel's Vectorsite
  3. Janes: JT12
  4. Wilkinson, Paul H. (1966). Aircraft engines of the World 1966/67 (21st ed.). London: Sir Isaac Pitman & Sons Ltd. p. 103.