Reilly's law of retail gravitation

Last updated

In economics, Reilly's law of retail gravitation is a heuristic developed by William J. Reilly in 1931. [1] According to Reilly's "law," customers are willing to travel longer distances to larger retail centers given the higher attraction they present to customers. In Reilly's formulation, the attractiveness of the retail center becomes the analogy for size (mass) in the physical law of gravity.

Contents

The law presumes the geography of the area is flat without any rivers, roads or mountains to alter a consumer's decision of where to travel to buy goods. It also assumes consumers are otherwise indifferent between the actual cities. In analogy with Newton's law of gravitation, the point of indifference is the point at which the "attractiveness" of the two retail centres (postulated to be proportional to their size and inversely proportional to the square of the distance to them) is equal:

Where is the distance of the point of indifference from A, is its distance from B, and is the relative size of the two centres. If the customer is on the line connecting A and B, then if D is the distance between the centres, the point of indifference as measured from A on the line is

As expected, for centres of the same size, d=D/2, and if A is larger than B, the point of indifference is closer to B. As the size of A becomes very large with respect to B, d tends to D, meaning the customer will always prefer the larger centre unless they're very close to the smaller one.

Manuscripts that introduced Reilly's law of retail gravitation

William J. Reilly wrote Methods for the Study of Retail Relationships in 1929. [2]

The manuscript compiled the following information of that time:

Two laters later, he published The Law of Retail Gravitation (1931). [3] The latter publication goes into more mathematical detail. [4]

Antecedents

In addition to Newton's Law of Gravity in the physical sciences, there were other antecedents to Reilly's "law" of retail gravity. In particular, E.C. Young in 1924 described a formula for migration that was based on the physical law of gravity, and H.C. Carey had included a description of the tendency of humans to "gravitate" together in an 1858 summary of social science theory. [5]

Applications and Later Works

Reilly's law has many variations, and extensions and applications are numerous. Among these include:

See also

Related Research Articles

<span class="mw-page-title-main">Kepler's laws of planetary motion</span> Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
<span class="mw-page-title-main">Simple harmonic motion</span> To-and-fro periodic motion in science and engineering

In mechanics and physics, simple harmonic motion is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is described by a sinusoid which continues indefinitely.

<span class="mw-page-title-main">Escape velocity</span> Concept in celestial mechanics

In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:

<span class="mw-page-title-main">Inverse-square law</span> Physical law

In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understood as geometric dilution corresponding to point-source radiation into three-dimensional space.

In Newtonian physics, free fall is any motion of a body where gravity is the only force acting upon it. In the context of general relativity, where gravitation is reduced to a space-time curvature, a body in free fall has no force acting on it.

<span class="mw-page-title-main">Orbital mechanics</span> Field of classical mechanics concerned with the motion of spacecraft

Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control.

Newton's law of universal gravitation says that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated at their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass. For objects where the surface is deep in the atmosphere and the radius not known, the surface gravity is given at the 1 bar pressure level in the atmosphere.

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

<span class="mw-page-title-main">Gravity train</span> Theoretical means of transportation

A gravity train is a theoretical means of transportation for purposes of commuting between two points on the surface of a sphere, by following a straight tunnel connecting the two points through the interior of the sphere.

Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.

Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.

<span class="mw-page-title-main">Gravity of Earth</span>

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force . It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

The gravity model of migration is a model in urban geography derived from Newton's law of gravity, and used to predict the degree of migration interaction between two places. Newton's law states that: "Any two bodies attract one another with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them."

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

Demographic gravitation is a concept of "social physics", introduced by Princeton University astrophysicist John Quincy Stewart in 1947. It is an attempt to use equations and notions of classical physics, such as gravity, to seek simplified insights and even laws of demographic behaviour for large numbers of human beings. A basic conception within it is that large numbers of people, in a city for example, actually behave as an attractive force for other people to migrate there. It has been related to W. J. Reilly's law of retail gravitation, George Kingsley Zipf's Demographic Energy, and to the theory of trip distribution through gravity models.

References

  1. Reilly WJ (1931) The law of retail gravitation. New York: Knickerbocker Press
  2. Reilly, William J. (1929). Methods for the Study of Retail Relationships. Austin, Texas: Bureau of Labor Research.
  3. Reilly, William J. The law of retail gravitation.
  4. "Another Look at Retail Gravitation Theory: History, Analysis, and Future Considerations". ABD Journal. 5 (1). 2013.
  5. Anderson, Patrick L., Business Economics & Finance, CRC Press, 2004; chapter 13.
  6. Huff, David L. (1964). “Defining and Estimating a Trade Area.” Journal of Marketing, Volume 28, 34-38.
  7. Converse, P.D. (1949). “New Laws of Retail Gravitation.” Journal of Marketing, Volume 14, January, 379-384
  8. Batty, M. (1978). “Reilly's challenge: new laws of retail gravitation which define systems of central places.” Environment and Planning A, 1978, volume 10, pages 185-219