Spring system

Last updated
A 2-dimensional spring system. Elastic network model.png
A 2-dimensional spring system.

In engineering and physics, a spring system or spring network is a model of physics described as a graph with a position at each vertex and a spring of given stiffness and length along each edge. This generalizes Hooke's law to higher dimensions. This simple model can be used to solve the pose of static systems from crystal lattice to springs. A spring system can be thought of as the simplest case of the finite element method for solving problems in statics. Assuming linear springs and small deformation (or restricting to one-dimensional motion) a spring system can be cast as a (possibly overdetermined) system of linear equations or equivalently as an energy minimization problem.

Contents

Known spring lengths

If the nominal lengths, L, of the springs are known to be 1 and 2 units respectively, then the system can be solved as follows: Consider the simple case of three nodes connected by two springs. Then the stretching of the two springs is given as a function of the positions of the nodes by

where is the matrix transpose of the incidence matrix

relating each degree of freedom to the direction each spring pulls on it. The forces on the springs are

where W is a diagonal matrix giving the stiffness of every spring. Then the force on the nodes is given by left multiplying by , which we set to zero to find equilibrium:

which gives the linear equation:

.

Now, the matrix is singular, because all solutions are equivalent up to rigid-body translation. Let us prescribe a Dirichlet boundary condition, e.g., .

As an example, let W be the identity matrix then

is the Laplacian matrix. Plugging in we have

.

Incorporating the 2 to the left-hand side gives

.

and removing rows of the system that we already know, and simplifying, leaves us with

.
.

so we can then solve

.

That is, , as prescribed, and , leaving the first spring slack, and , leaving the second spring slack.

See also

Related Research Articles

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming.

<span class="mw-page-title-main">Linear programming</span> Method to solve some optimization problems

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of one or more linear equations involving the same variables.

Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2×2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.

In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is. An identity matrix of any size, or any multiple of it, is a diagonal matrix.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations or difference equations. State variables are variables whose values evolve over time in a way that depends on the values they have at any given time and on the externally imposed values of input variables. Output variables’ values depend on the values of the state variables.

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.

<span class="mw-page-title-main">Phase plane</span> Visual representation used in non-linear control system analysis

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say, or etc.. It is a two-dimensional case of the general n-dimensional phase space.

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by , is the factor by which the eigenvector is scaled.

<span class="mw-page-title-main">Galerkin method</span>

In mathematics, in the area of numerical analysis, Galerkin methods, named after the Russian mathematician Boris Galerkin, convert a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.

As one of the methods of structural analysis, the direct stiffness method, also known as the matrix stiffness method, is particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the nodes. The material stiffness properties of these elements are then, through matrix mathematics, compiled into a single matrix equation which governs the behaviour of the entire idealized structure. The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software.

In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel, and is similar to the Jacobi method. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. A publication was not delivered before 1874 by Seidel.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

<span class="mw-page-title-main">Matrix (mathematics)</span> Two-dimensional array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

A matrix difference equation is a difference equation in which the value of a vector of variables at one point in time is related to its own value at one or more previous points in time, using matrices. The order of the equation is the maximum time gap between any two indicated values of the variable vector. For example,