Structural mechanics

Last updated
Space frame used in a building structure SpaceFrame02.png
Space frame used in a building structure
Tubular frame used in a competition car Caterham7spaceframe-front.jpg
Tubular frame used in a competition car

Structural mechanics or mechanics of structures is the computation of deformations, deflections, and internal forces or stresses (stress equivalents) within structures, either for design or for performance evaluation of existing structures. It is one subset of structural analysis. Structural mechanics analysis needs input data such as structural loads, the structure's geometric representation and support conditions, and the materials' properties. Output quantities may include support reactions, stresses and displacements. Advanced structural mechanics may include the effects of stability and non-linear behaviors.

Contents

Mechanics of structures is a field of study within applied mechanics that investigates the behavior of structures under mechanical loads, such as bending of a beam, buckling of a column, torsion of a shaft, deflection of a thin shell, and vibration of a bridge.

There are three approaches to the analysis: the energy methods, flexibility method or direct stiffness method which later developed into finite element method and the plastic analysis approach.

Energy method

Flexibility method

Stiffness methods

Plastic analysis approach

Major topics


Related Research Articles

<span class="mw-page-title-main">Structural engineering</span> Sub-discipline of civil engineering dealing with the creation of man made structures

Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and muscles' that create the form and shape of human-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on the physical structures and their components. In contrast to theory of elasticity, the models used in structure analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, velocity, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often precluding physical tests. Structural analysis is thus a key part of the engineering design of structures.

Solid mechanics is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

<span class="mw-page-title-main">Beam (structure)</span> Structural element capable of withstanding loads by resisting bending

A beam is a structural element that primarily resists loads applied laterally to the beam's axis. Its mode of deflection is primarily by bending. The loads applied to the beam result in reaction forces at the beam's support points. The total effect of all the forces acting on the beam is to produce shear forces and bending moments within the beams, that in turn induce internal stresses, strains and deflections of the beam. Beams are characterized by their manner of support, profile, equilibrium conditions, length, and their material.

<span class="mw-page-title-main">Buckling</span> Sudden change in shape of a structural component under load

In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.

In statics and structural mechanics, a structure is statically indeterminate when the static equilibrium equations – force and moment equilibrium conditions – are insufficient for determining the internal forces and reactions on that structure.

<span class="mw-page-title-main">Shear wall</span> A wall intended to withstand the lateral load

In structural engineering, a shear wall is a vertical element of a system that is designed to resist in-plane lateral forces, typically wind and seismic loads. In many jurisdictions, the International Building Code and International Residential Code govern the design of shear walls.

The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at discrete points called nodes. Elements may have physical properties such as thickness, coefficient of thermal expansion, density, Young's modulus, shear modulus and Poisson's ratio.

<span class="mw-page-title-main">Plastic bending</span>

Plastic bending is a nonlinear behavior particular to members made of ductile materials that frequently achieve much greater ultimate bending strength than indicated by a linear elastic bending analysis. In both the plastic and elastic bending analyses of a straight beam, it is assumed that the strain distribution is linear about the neutral axis. In an elastic analysis this assumption leads to a linear stress distribution but in a plastic analysis the resulting stress distribution is nonlinear and is dependent on the beam’s material.

This is an alphabetical list of articles pertaining specifically to structural engineering. For a broad overview of engineering, please see List of engineering topics. For biographies please see List of engineers.

Rotordynamics, also known as rotor dynamics, is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage. At its most basic level, rotor dynamics is concerned with one or more mechanical structures (rotors) supported by bearings and influenced by internal phenomena that rotate around a single axis. The supporting structure is called a stator. As the speed of rotation increases the amplitude of vibration often passes through a maximum that is called a critical speed. This amplitude is commonly excited by imbalance of the rotating structure; everyday examples include engine balance and tire balance. If the amplitude of vibration at these critical speeds is excessive, then catastrophic failure occurs. In addition to this, turbomachinery often develop instabilities which are related to the internal makeup of turbomachinery, and which must be corrected. This is the chief concern of engineers who design large rotors.

<span class="mw-page-title-main">Structural engineering theory</span>

Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. They will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment.

<span class="mw-page-title-main">VisualFEA</span>

VisualFEA is a finite element analysis software program for Microsoft Windows and Mac OS X. It is developed and distributed by Intuition Software, Inc. of South Korea, and used chiefly for structural and geotechnical analysis. Its strongest point is its intuitive, user-friendly design based on graphical pre- and postprocessing capabilities. It has educational features for teaching and learning structural mechanics, and finite element analysis through graphical simulation. It is widely used in college-level courses related to structural mechanics and finite element methods.

<span class="mw-page-title-main">Flexcom</span> Finite element analysis software

Flexcom is a finite element analysis software package used in the offshore oil and gas and marine renewable energy industries. An educational version is also available for universities.

Unified framework is a general formulation which yields nth - order expressions giving mode shapes and natural frequencies for damaged elastic structures such as rods, beams, plates, and shells. The formulation is applicable to structures with any shape of damage or those having more than one area of damage. The formulation uses the geometric definition of the discontinuity at the damage location and perturbation to modes and natural frequencies of the undamaged structure to determine the mode shapes and natural frequencies of the damaged structure. The geometric discontinuity at the damage location manifests itself in terms of discontinuities in the cross-sectional properties, such as the depth of the structure, the cross-sectional area or the area moment of inertia. The change in cross-sectional properties in turn affects the stiffness and mass distribution. Considering the geometric discontinuity along with the perturbation of modes and natural frequencies, the initial homogeneous differential equation with nonconstant coefficients is changed to a series of non-homogeneous differential equations with constant coefficients. Solutions of this series of differential equations is obtained in this framework.

Lumped damage mechanics or LDM is a branch of structural mechanics that is concerned with the analysis of frame structures. It is based on continuum damage mechanics and fracture mechanics. It combines the ideas of these theories with the concept of plastic hinge LDM can be defined as the fracture mechanics of complex structural systems. In the models of LDM, cracking or local buckling as well as plasticity are lumped at the inelastic hinges. As in continuum damage mechanics, LDM uses state variables to represent the effects of damage on the remaining stiffness and strength of the frame structure. In reinforced concrete structures, the damage state variable quantifies the crack density in the plastic hinge zone; in unreinforced concrete components and steel beams, it is a dimensionless measure of the crack surface; in tubular steel elements, the damage variable measures the degree of local buckling The LDM evolution laws can be derived from continuum damage mechanics or fracture mechanics. In the latter case, concepts such as the energy release rate or the stress intensity factor of a plastic hinge are introduced. LDM allows for the numerical simulation of the collapse of complex structures with a fraction of the computational cost and human effort of its continuum mechanics counterparts. LDM is also a regularization procedure that eliminates the mesh-dependence phenomenon that is observed in structural analysis with local damage models. In addition, LDM method has been implemented in the finite element analysis of crack propagation of steel beam-to-column connections subjected to ultra-low cycle fatigue.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.

Variational Asymptotic Method (VAM) is a powerful mathematical approach to simplify the process of finding stationary points for a described functional by taking advantage of small parameters. VAM is the synergy of variational principles and asymptotic approaches. Variational principles are applied to the defined functional as well as the asymptotes are applied to the same functional instead of applying on differential equations which is more prone error. This methodology is applicable for a whole range of physics problems, where the problem has to be defined in a variational form and should be able to identify the small parameters within the problem definition. In other words, VAM can be applicable where the functional is so complex in determining the stationary points either by analytical or by computationally expensive numerical analysis with an advantage of small parameters. Thus, approximate stationary points in the functional can be utilized to obtain the original functional.