Troposkein

Last updated
A Darrieus wind turbine has blades that approximate the shape of a troposkein to minimize bending stresses Darrieus rotor001.jpg
A Darrieus wind turbine has blades that approximate the shape of a troposkein to minimize bending stresses

In physics and geometry, the troposkein is the curve an idealized rope assumes when anchored at its ends and spun around its long axis at a constant angular velocity. This shape is similar to the shape assumed by a skipping rope, and is independent of rotational speed in the absence of gravity, but varies with respect to rotational speed in the presence of gravity. The troposkein does not have a closed-form representation; in the absence of gravity, though, it can be approximated by a pair of line segments spanned by a circular arc (tangential to the line segments at its endpoints). The form of a troposkein can be approximated for a given gravitational acceleration, rope density and angular velocity by iterative approximation. This shape is also useful for decreasing the stress experienced by the blades of a Darrieus vertical axis wind turbine.

Related Research Articles

<span class="mw-page-title-main">Coriolis force</span> Apparent force in a rotating reference frame

In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Jerk (physics)</span> Rate of change of acceleration with time

In physics, jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s).

<span class="mw-page-title-main">Precession</span> Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

<span class="mw-page-title-main">Windpump</span> A windmill for pumping water

A windpump is a wind-driven device which is used for pumping water.

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

<span class="mw-page-title-main">Darrieus wind turbine</span> Type of vertical axis wind turbine

The Darrieus wind turbine is a type of vertical axis wind turbine (VAWT) used to generate electricity from wind energy. The turbine consists of a number of curved aerofoil blades mounted on a rotating shaft or framework. The curvature of the blades allows the blade to be stressed only in tension at high rotating speeds. There are several closely related wind turbines that use straight blades. This design of the turbine was patented by Georges Jean Marie Darrieus, a French aeronautical engineer; filing for the patent was October 1, 1926. There are major difficulties in protecting the Darrieus turbine from extreme wind conditions and in making it self-starting.

Yaw or yaws may refer to:

Blade pitch or simply pitch refers to the angle of a blade in a fluid. The term has applications in aeronautics, shipping, and other fields.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

<span class="mw-page-title-main">Betz's law</span> Aerodynamic power limitation for wind turbines

In aerodynamics, Betz's law indicates the maximum power that can be extracted from the wind, independent of the design of a wind turbine in open flow. It was published in 1919 by the German physicist Albert Betz. The law is derived from the principles of conservation of mass and momentum of the air stream flowing through an idealized "actuator disk" that extracts energy from the wind stream. According to Betz's law, no wind turbine of any mechanism can capture more than 16/27 (59.3%) of the kinetic energy in wind. The factor 16/27 (0.593) is known as Betz's coefficient. Practical utility-scale wind turbines achieve at peak 75–80% of the Betz limit.

<span class="mw-page-title-main">Gorlov helical turbine</span> Water turbine

The Gorlov helical turbine (GHT) is a water turbine evolved from the Darrieus turbine design by altering it to have helical blades/foils. Water turbines take kinetic energy and translate it into electricity. It was patented in a series of patents from September 19, 1995 to July 3, 2001 and won 2001 ASME Thomas A. Edison. GHT was invented by Alexander M. Gorlov, professor of Northeastern University.

<span class="mw-page-title-main">Unconventional wind turbines</span> Wind turbines of unconventional design

Unconventional wind turbines are those that differ significantly from the most common types in use.

<span class="mw-page-title-main">Stellar rotation</span> Angular motion of a star about its axis

Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface.

<span class="mw-page-title-main">Wind turbine</span> Machine that converts wind energy into electrical energy

A wind turbine is a device that converts the kinetic energy of wind into electrical energy. As of 2020, hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels. One study claimed that, as of 2009, wind had the "lowest relative greenhouse gas emissions, the least water consumption demands and the most favorable social impacts" compared to photovoltaic, hydro, geothermal, coal and gas energy sources.

<span class="mw-page-title-main">Wind-turbine aerodynamics</span> Physical property

The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.

<span class="mw-page-title-main">Kline–Fogleman airfoil</span>

The Kline–Fogleman airfoil or KF airfoil is a simple airfoil design with single or multiple steps along the length of the wing. It was originally devised in the 1960s for paper airplanes.

Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.

The loads on both horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs) are cyclic; the thrust and torque acting on the blades depend on where the blade is. In a horizontal axis wind turbine, both the apparent wind speed seen by the blade and the angle of attack depends on the blade's position. This phenomenon is described as rotational sampling. This article will provide insight into the cyclic nature of the loads that arise because of rotational sampling for a horizontal axis wind turbine.

<span class="mw-page-title-main">Cyclorotor</span> Perpendicular axis marine propulsion system

A cyclorotor, cycloidal rotor, cycloidal propeller or cyclogiro, is a fluid propulsion device that converts shaft power into the acceleration of a fluid using a rotating axis perpendicular to the direction of fluid motion. It uses several blades with a spanwise axis parallel to the axis of rotation and perpendicular to the direction of fluid motion. These blades are cyclically pitched twice per revolution to produce force in any direction normal to the axis of rotation. Cyclorotors are used for propulsion, lift, and control on air and water vehicles. An aircraft using cyclorotors as the primary source of lift, propulsion, and control is known as a cyclogyro or cyclocopter. A unique aspect is that it can change the magnitude and direction of thrust without the need of tilting any aircraft structures. The patented application, used on ships with particular actuation mechanisms both mechanical or hydraulic, is named after German company Voith Turbo.

<span class="mw-page-title-main">Vertical-axis wind turbine</span> Type of wind turbine

A vertical-axis wind turbine (VAWT) is a type of wind turbine where the main rotor shaft is set transverse to the wind while the main components are located at the base of the turbine. This arrangement allows the generator and gearbox to be located close to the ground, facilitating service and repair. VAWTs do not need to be pointed into the wind, which removes the need for wind-sensing and orientation mechanisms. Major drawbacks for the early designs included the significant torque ripple during each revolution, and the large bending moments on the blades. Later designs addressed the torque ripple by sweeping the blades helically. Savonius vertical-axis wind turbines (VAWT) are not widespread, but their simplicity and better performance in disturbed flow-fields, compared to small horizontal-axis wind turbines (HAWT) make them a good alternative for distributed generation devices in an urban environment.

References