Wall-plug efficiency

Last updated

In optics, wall-plug efficiency or radiant efficiency is the energy conversion efficiency with which the system converts electrical power into optical power. It is defined as the ratio of the radiant flux (i.e., the total optical output power) to the input electrical power. [1]

Optics The branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

Energy conversion efficiency ratio between the useful output and the input of a machine

Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat.

In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time. Having no direction, it is a scalar quantity. In the International System of Units, the unit of power is the joule per second (J/s), known as the watt in honour of James Watt, the eighteenth-century developer of the condenser steam engine. Another common and traditional measure is horsepower. Being the rate of work, the equation for power can be written:

In laser systems, this efficiency includes losses in the power supply and also the power required for a cooling system, not just the laser itself. [2]

Laser device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term "laser" originated as an acronym for "Light Amplification by Stimulated Emission of Radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.

See also

Luminous efficacy is a measure of how well a light source produces visible light. It is the ratio of luminous flux to power, measured in lumens per watt in the International System of Units (SI). Depending on context, the power can be either the radiant flux of the source's output, or it can be the total power consumed by the source. Which sense of the term is intended must usually be inferred from the context, and is sometimes unclear. The former sense is sometimes called luminous efficacy of radiation, and the latter luminous efficacy of a source or overall luminous efficacy.

A coefficient of utilization (CU) is a measure of the efficiency of a luminaire in transferring luminous energy to the working plane in a particular area. The CU is the ratio of luminous flux from a luminaire incident upon a work plane to that emitted by the lamps within the luminaire. As a ratio, the coefficient of utilization is unitless.

SI radiometry units
Quantity Unit Dimension Notes
NameSymbol [nb 1] NameSymbolSymbol
Radiant energy Qe [nb 2] joule J ML2T−2 Energy of electromagnetic radiation.
Radiant energy density we joule per cubic metre J/m3ML−1T−2 Radiant energy per unit volume.
Radiant flux Φe [nb 2] watt W = J/sML2T−3 Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power".
Spectral flux Φe,ν [nb 3]
 or
Φe,λ [nb 4]
watt per hertz
 or
watt per metre
W/Hz
 or
W/m
ML2T−2
 or
MLT−3
Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1.
Radiant intensity Ie,Ω [nb 5] watt per steradian W/sr ML2T−3 Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity.
Spectral intensity Ie,Ω,ν [nb 3]
 or
Ie,Ω,λ [nb 4]
watt per steradian per hertz
 or
watt per steradian per metre
W⋅sr−1⋅Hz−1
 or
W⋅sr−1⋅m−1
ML2T−2
 or
MLT−3
Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity.
Radiance Le,Ω [nb 5] watt per steradian per square metre W⋅sr−1⋅m−2MT−3 Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity".
Spectral radiance Le,Ω,ν [nb 3]
 or
Le,Ω,λ [nb 4]
watt per steradian per square metre per hertz
 or
watt per steradian per square metre, per metre
W⋅sr−1⋅m−2⋅Hz−1
 or
W⋅sr−1⋅m−3
MT−2
 or
ML−1T−3
Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity".
Irradiance
Flux density
Ee [nb 2] watt per square metre W/m2MT−3 Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance
Spectral flux density
Ee,ν [nb 3]
 or
Ee,λ [nb 4]
watt per square metre per hertz
 or
watt per square metre, per metre
W⋅m−2⋅Hz−1
 or
W/m3
MT−2
 or
ML−1T−3
Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy).
Radiosity Je [nb 2] watt per square metre W/m2MT−3 Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral radiosity Je,ν [nb 3]
 or
Je,λ [nb 4]
watt per square metre per hertz
 or
watt per square metre, per metre
W⋅m−2⋅Hz−1
 or
W/m3
MT−2
 or
ML−1T−3
Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity".
Radiant exitance Me [nb 2] watt per square metre W/m2MT−3 Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance Me,ν [nb 3]
 or
Me,λ [nb 4]
watt per square metre per hertz
 or
watt per square metre, per metre
W⋅m−2⋅Hz−1
 or
W/m3
MT−2
 or
ML−1T−3
Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
Radiant exposure He joule per square metre J/m2MT−2 Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence".
Spectral exposure He,ν [nb 3]
 or
He,λ [nb 4]
joule per square metre per hertz
 or
joule per square metre, per metre
J⋅m−2⋅Hz−1
 or
J/m3
MT−1
 or
ML−1T−2
Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence".
Hemispherical emissivity ε1 Radiant exitance of a surface, divided by that of a black body at the same temperature as that surface.
Spectral hemispherical emissivity εν
 or
ελ
1 Spectral exitance of a surface, divided by that of a black body at the same temperature as that surface.
Directional emissivity εΩ1 Radiance emitted by a surface, divided by that emitted by a black body at the same temperature as that surface.
Spectral directional emissivity εΩ,ν
 or
εΩ,λ
1 Spectral radiance emitted by a surface, divided by that of a black body at the same temperature as that surface.
Hemispherical absorptance A1 Radiant flux absorbed by a surface, divided by that received by that surface. This should not be confused with "absorbance".
Spectral hemispherical absorptance Aν
 or
Aλ
1 Spectral flux absorbed by a surface, divided by that received by that surface. This should not be confused with "spectral absorbance".
Directional absorptance AΩ1 Radiance absorbed by a surface, divided by the radiance incident onto that surface. This should not be confused with "absorbance".
Spectral directional absorptance AΩ,ν
 or
AΩ,λ
1 Spectral radiance absorbed by a surface, divided by the spectral radiance incident onto that surface. This should not be confused with "spectral absorbance".
Hemispherical reflectance R1 Radiant flux reflected by a surface, divided by that received by that surface.
Spectral hemispherical reflectance Rν
 or
Rλ
1 Spectral flux reflected by a surface, divided by that received by that surface.
Directional reflectance RΩ1 Radiance reflected by a surface, divided by that received by that surface.
Spectral directional reflectance RΩ,ν
 or
RΩ,λ
1 Spectral radiance reflected by a surface, divided by that received by that surface.
Hemispherical transmittance T1 Radiant flux transmitted by a surface, divided by that received by that surface.
Spectral hemispherical transmittance Tν
 or
Tλ
1 Spectral flux transmitted by a surface, divided by that received by that surface.
Directional transmittance TΩ1 Radiance transmitted by a surface, divided by that received by that surface.
Spectral directional transmittance TΩ,ν
 or
TΩ,λ
1 Spectral radiance transmitted by a surface, divided by that received by that surface.
Hemispherical attenuation coefficient μ reciprocal metre m−1L−1 Radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral hemispherical attenuation coefficient μν
 or
μλ
reciprocal metre m−1L−1 Spectral radiant flux absorbed and scattered by a volume per unit length, divided by that received by that volume.
Directional attenuation coefficient μΩ reciprocal metre m−1L−1 Radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
Spectral directional attenuation coefficient μΩ,ν
 or
μΩ,λ
reciprocal metre m−1L−1 Spectral radiance absorbed and scattered by a volume per unit length, divided by that received by that volume.
See also: SI  · Radiometry  · Photometry
  1. Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
  2. 1 2 3 4 5 Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
  3. 1 2 3 4 5 6 7 Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek)—not to be confused with suffix "v" (for "visual") indicating a photometric quantity.
  4. 1 2 3 4 5 6 7 Spectral quantities given per unit wavelength are denoted with suffix "λ" (Greek).
  5. 1 2 Directional quantities are denoted with suffix "Ω" (Greek).

Related Research Articles

In physics, optical depth or optical thickness, is the natural logarithm of the ratio of incident to transmitted radiant power through a material, and spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which characterize the light's interaction with the human eye. Radiometry is distinct from quantum techniques such as photon counting.

Reflectance capacity of an object to reflect light

Reflectance of the surface of a material is its effectiveness in reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at an interface. The reflectance spectrum or spectral reflectance curve is the plot of the reflectance as a function of wavelength.

In physics, intensity is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2). It is used most frequently with waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

Luminous intensity extensive physical property

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

Photometry (optics) science of the measurement of light

Photometry is the science of the measurement of light, in terms of its perceived brightness to the human eye. It is distinct from radiometry, which is the science of measurement of radiant energy in terms of absolute power. In modern photometry, the radiant power at each wavelength is weighted by a luminosity function that models human brightness sensitivity. Typically, this weighting function is the photopic sensitivity function, although the scotopic function or other functions may also be applied in the same way.

Radiant energy energy carried by electromagnetic radiation or gravitational radiation

In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calculated by integrating radiant flux with respect to time. The symbol Qe is often used throughout literature to denote radiant energy. In branches of physics other than radiometry, electromagnetic energy is referred to using E or W. The term is used particularly when electromagnetic radiation is emitted by a source into the surrounding environment. This radiation may be visible or invisible to the human eye.

Transmittance effectiveness in transmitting radiant energy;fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field

Transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.

In radiometry, radiance is the radiant flux emitted, reflected, transmitted or received by a given surface, per unit solid angle per unit projected area. Spectral radiance is the radiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiance is the watt per steradian per square metre, while that of spectral radiance in frequency is the watt per steradian per square metre per hertz and that of spectral radiance in wavelength is the watt per steradian per square metre, per metre —commonly the watt per steradian per square metre per nanometre. The microflick is also used to measure spectral radiance in some fields. Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, or to quantify emission of neutrinos and other particles. Historically, radiance is called "intensity" and spectral radiance is called "specific intensity". Many fields still use this nomenclature. It is especially dominant in heat transfer, astrophysics and astronomy. "Intensity" has many other meanings in physics, with the most common being power per unit area.

In radiometry, irradiance is the radiant flux (power) received by a surface per unit area. The SI unit of irradiance is the watt per square metre. The CGS unit erg per square centimetre per second is often used in astronomy. Irradiance is often called intensity because it has the same physical dimensions, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity.

Luminous flux physical quantity

In photometry, luminous flux or luminous power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of electromagnetic radiation, in that luminous flux is adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light.

In radiometry, radiant intensity is the radiant flux emitted, reflected, transmitted or received, per unit solid angle, and spectral intensity is the radiant intensity per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. These are directional quantities. The SI unit of radiant intensity is the watt per steradian, while that of spectral intensity in frequency is the watt per steradian per hertz and that of spectral intensity in wavelength is the watt per steradian per metre —commonly the watt per steradian per nanometre. Radiant intensity is distinct from irradiance and radiant exitance, which are often called intensity in branches of physics other than radiometry. In radio-frequency engineering, radiant intensity is sometimes called radiation intensity.

In photometry, luminous energy is the perceived energy of light. This is sometimes called the quantity of light. Luminous energy is not the same as radiant energy, the corresponding objective physical quantity. This is because the human eye can only see light in the visible spectrum and has different sensitivities to light of different wavelengths within the spectrum. When adapted for bright conditions, the eye is most sensitive to light at a wavelength of 555 nm. Light with a given amount of radiant energy will have more luminous energy if the wavelength is 555 nm than if the wavelength is longer or shorter. Light whose wavelength is well outside the visible spectrum has a luminous energy of zero, regardless of the amount of radiant energy present.

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted or received, per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), that is the joule per second in SI base units, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre, while that of spectral exitance in frequency is the watt per square metre per hertz (W·m−2·Hz−1) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m−3)—commonly the watt per square metre per nanometre. The CGS unit erg per square centimeter per second is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

Absorptance of the surface of a material is its effectiveness in absorbing radiant energy. It is the ratio of the absorbed to the incident radiant power. This should not be confused with absorbance and absorption coefficient.

In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure or is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant exposure is the joule per square metre, while that of spectral exposure in frequency is the joule per square metre per hertz and that of spectral exposure in wavelength is the joule per square metre per metre —commonly the joule per square metre per nanometre.

In radiometry, radiant energy density is the radiant energy per unit volume. The SI unit of radiant energy density is the joule per cubic metre (J/m3).

References

  1. N. P. Barnes, “Solid-state lasers from an efficiency perspective”, IEEE J. Sel. Top. Quantum Electron. 13 (3), 435 (2007)
  2. Experimental measurement of the wall-plug efficiency in THz quantum cascade lasers