GRE Biochemistry, Cell and Molecular Biology Test

Last updated
Graduate Record Examination
(Biochemistry Subject Test)
GRE logo.svg
TypePaper-based standardized test [1]
Developer / administrator Educational Testing Service
Knowledge / skills testedUndergraduate level biochemistry:
PurposeAdmissions in graduate programs (e.g. M.S. and Ph.D.) in biochemistry (mostly in universities in the United States)
Year started(?) ((?))
Duration2 hours and 50 minutes [1]
Score / grade range200 to 990, in 10-point increments [3]
Score / grade validity5 years [3]
Offered3 times a year, in September, October and April [4]
Countries / regionsWorldwide
LanguagesEnglish
Annual number of test takers~1,500-2,000 yearly
Prerequisites / eligibility criteriaNo official prerequisite. Intended for biochemistry bachelor degree graduates or undergraduate students about to graduate. Fluency in English assumed.
FeeUS$ 150 [5]
(Limited offers of "Fee Reduction Program" for U.S. citizens or resident aliens who demonstrate financial need, and for national programs in the USA that work with underrepresented groups. [6] )
Scores / grades used by Biochemistry departments offering graduate programs (mostly in universities in the United States).
Website www.ets.org/gre/subject/about/content/biochemistry

GRE Subject Biochemistry, Cell and Molecular Biology was a standardized exam provided by ETS (Educational Testing Service) that was discontinued in December 2016. It is a paper-based exam and there are no computer-based versions of it. ETS places this exam three times per year: once in April, once in October and once in November. Some graduate programs in the United States recommend taking this exam, while others require this exam score as a part of the application to their graduate programs. ETS sends a bulletin with a sample practice test to each candidate after registration for the exam. There are 180 questions within the biochemistry subject test.

Contents

Scores are scaled and then reported as a number between 200 and 990; however, in recent versions of the test, the maximum and minimum reported scores have been 760 (corresponding to the 99 percentile) and 320 (1 percentile) respectively. The mean score for all test takers from July, 2009, to July, 2012, was 526 with a standard deviation of 95. [7] After learning that test content from editions of the GRE® Biochemistry, Cell and Molecular Biology (BCM) Test has been compromised in Israel, ETS made the decision not to administer this test worldwide in 2016–17.

Content specification

Since many students who apply to graduate programs in biochemistry do so during the first half of their fourth year, the scope of most questions is largely that of the first three years of a standard American undergraduate biochemistry curriculum. A sampling of test item content is given below: [2]

Biochemistry (36%)

A Chemical and Physical Foundations

Thermodynamics and kinetics Redox states Water, pH, acid-base reactions and buffers Solutions and equilibria Solute-solvent interactions Chemical interactions and bonding Chemical reaction mechanisms

B Structural Biology: Structure, Assembly, Organization and Dynamics Small molecules Macromolecules (e.g., nucleic acids, polysaccharides, proteins and complex lipids) Supramolecular complexes (e.g., membranes, ribosomes and multienzyme complexes)

C Catalysis and Binding

Enzyme reaction mechanisms and kinetics Ligand-protein interaction (e.g., hormone receptors, substrates and effectors, transport proteins and antigen-antibody interactions)

D Major Metabolic Pathways

Carbon, nitrogen and sulfur assimilation Anabolism Catabolism Synthesis and degradation of macromolecules

E Bioenergetics (including respiration and photosynthesis)

Energy transformations at the substrate level Electron transport Proton and chemical gradients Energy coupling (e.g., phosphorylation and transport)

F Regulation and Integration of Metabolism

Covalent modification of enzymes Allosteric regulation Compartmentalization Hormones

G Methods

Biophysical approaches (e.g., spectroscopy, x-ray, crystallography, mass spectroscopy) Isotopes Separation techniques (e.g., centrifugation, chromatography and electrophoresis) Immunotechniques

Cell biology (28%)

Methods of importance to cellular biology, such as fluorescence probes (e.g., FRAP, FRET and GFP) and imaging, will be covered as appropriate within the context of the content below.

A. Cellular Compartments of Prokaryotes and Eukaryotes: Organization, Dynamics and Functions

Cellular membrane systems (e.g., structure and transport across membrane) Nucleus (e.g., envelope and matrix) Mitochondria and chloroplasts (e.g., biogenesis and evolution)

B. Cell Surface and Communication Extracellular matrix (including cell walls) Cell adhesion and junctions Signal transduction Receptor function Excitable membrane systems

C. Cytoskeleton, Motility and Shape Regulation of assembly and disassembly of filament systems Motor function, regulation and diversity

D. Protein, Processing, Targeting and Turnover

Translocation across membranes Posttranslational modification Intracellular trafficking Secretion and endocytosis Protein turnover (e.g., proteosomes, lysosomes, damaged protein response)

E. Cell Division, Differentiation and Development

Cell cycle, mitosis and cytokinesis Meiosis and gametogenesis Fertilization and early embryonic development (including positional information, homeotic genes, tissue-specific expression, nuclear and cytoplasmic interactions, growth factors and induction, environment, stem cells and polarity)

Molecular biology (36%)

A. Genetic Foundations

Mendelian and non-Mendelian inheritance Transformation, transduction and conjugation Recombination and complementation Mutational analysis Genetic mapping and linkage analysis

B. Chromatin and Chromosomes

Karyotypes Translocations, inversions, deletions and duplications Aneuploidy and polyploidy Structure Epigenetics

C. Genomics

Genome structure Physical mapping Repeated DNA and gene families Gene identification Transposable elements Bioinformatics Proteomics Molecular evolution

D. Genome Maintenance

DNA replication DNA damage and repair DNA modification DNA recombination and gene conversion

E. Gene Expression/Recombinant DNA Technology

The genetic code Transcription/transcriptional profiling RNA processing Translation

F. Gene Regulation

Positive and negative control of the operon Promoter recognition by RNA polymerases Attenuation and antitermination Cis-acting regulatory elements Trans-acting regulatory factors Gene rearrangements and amplifications Small non-coding RNA (e.g., siRNA, microRNA)

G. Viruses

Genome replication and regulation Virus assembly Virus-host interactions

H. Methods

Restriction maps and PCR Nucleic acid blotting and hybridization DNA cloning in prokaryotes and eukaryotes Sequencing and analysis Protein-nucleic acid interaction Transgenic organisms Microarrays

See also

Related Research Articles

<span class="mw-page-title-main">Outline of biology</span> Outline of subdisciplines within biology

Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.

<span class="mw-page-title-main">DNA</span> Molecule that carries genetic information

Deoxyribonucleic acid is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Molecular biology is the study of chemical and physical structure of biological macromolecules. It is a branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions.

<span class="mw-page-title-main">Nucleic acid</span> Class of large biomolecules essential to all known life

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is deoxyribose, a version of ribose, the polymer is DNA.

<span class="mw-page-title-main">Protein</span> Biomolecule consisting of chains of amino acid residues

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

<span class="mw-page-title-main">Retrovirus</span> Family of viruses

A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds.

<span class="mw-page-title-main">Biophysics</span> Study of biological systems using methods from the physical sciences

Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.

<span class="mw-page-title-main">Gene expression</span> Conversion of a genes sequence into a mature gene product or products

Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, and ultimately affect a phenotype. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. Gene expression is summarized in the central dogma of molecular biology first formulated by Francis Crick in 1958, further developed in his 1970 article, and expanded by the subsequent discoveries of reverse transcription and RNA replication.

<span class="mw-page-title-main">Translation (biology)</span> Cellular process of protein synthesis

In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.

<span class="mw-page-title-main">Index of biochemistry articles</span>

Biochemistry is the study of the chemical processes in living organisms. It deals with the structure and function of cellular components such as proteins, carbohydrates, lipids, nucleic acids and other biomolecules.

<span class="mw-page-title-main">Two-hybrid screening</span> Molecular biology technique

Two-hybrid screening is a molecular biology technique used to discover protein–protein interactions (PPIs) and protein–DNA interactions by testing for physical interactions between two proteins or a single protein and a DNA molecule, respectively.

<span class="mw-page-title-main">Triple-stranded DNA</span> DNA structure

Triple-stranded DNA is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.

<span class="mw-page-title-main">Outline of biochemistry</span> Overview of and topical guide to biochemistry

The following outline is provided as an overview of and topical guide to biochemistry:

<span class="mw-page-title-main">Outline of cell biology</span> Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

<span class="mw-page-title-main">Nucleic acid secondary structure</span>

Nucleic acid secondary structure is the basepairing interactions within a single nucleic acid polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule. The secondary structures of biological DNAs and RNAs tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar.

Numerous key discoveries in biology have emerged from studies of RNA, including seminal work in the fields of biochemistry, genetics, microbiology, molecular biology, molecular evolution and structural biology. As of 2010, 30 scientists have been awarded Nobel Prizes for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article.

<span class="mw-page-title-main">Macromolecular assembly</span>

The term macromolecular assembly (MA) refers to massive chemical structures such as viruses and non-biologic nanoparticles, cellular organelles and membranes and ribosomes, etc. that are complex mixtures of polypeptide, polynucleotide, polysaccharide or other polymeric macromolecules. They are generally of more than one of these types, and the mixtures are defined spatially, and with regard to their underlying chemical composition and structure. Macromolecules are found in living and nonliving things, and are composed of many hundreds or thousands of atoms held together by covalent bonds; they are often characterized by repeating units. Assemblies of these can likewise be biologic or non-biologic, though the MA term is more commonly applied in biology, and the term supramolecular assembly is more often applied in non-biologic contexts. MAs of macromolecules are held in their defined forms by non-covalent intermolecular interactions, and can be in either non-repeating structures, or in repeating linear, circular, spiral, or other patterns. The process by which MAs are formed has been termed molecular self-assembly, a term especially applied in non-biologic contexts. A wide variety of physical/biophysical, chemical/biochemical, and computational methods exist for the study of MA; given the scale of MAs, efforts to elaborate their composition and structure and discern mechanisms underlying their functions are at the forefront of modern structure science.

This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology, and Glossary of scientific naming, or any of the organism-specific glossaries in Category:Glossaries of biology.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

References

  1. 1 2 "GRE Subject Tests Content and Structure (For Test Takers)".
  2. 1 2 "Biochemistry".
  3. 1 2 "GRE Subject Test Scores (For Test Takers)".
  4. "About the GRE Subject Tests (For Test Takers)".
  5. "GRE Subject Tests Fees (For Test Takers)".
  6. "GRE Subject Tests Fee Reduction Program (For Test Takers)".
  7. https://www.ets.org/s/gre/pdf/gre_guide_table2.pdf [ bare URL PDF ]