1,2-Bis(diphenylphosphino)ethane

Last updated
1,2-Bis(diphenylphosphino)ethane
DPPE structure.svg
Dppe-from-xtal-2001-3D-balls.png
Names
Preferred IUPAC name
(Ethane-1,2-diyl)bis(diphenylphosphane)
Other names
1,2-Bis(diphenylphosphino)ethane
Diphos
Dppe
Identifiers
3D model (JSmol)
761261
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.015.246 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 216-769-2
9052
PubChem CID
UNII
  • InChI=1S/C26H24P2/c1-5-13-23(14-6-1)27(24-15-7-2-8-16-24)21-22-28(25-17-9-3-10-18-25)26-19-11-4-12-20-26/h1-20H,21-22H2 Yes check.svgY
    Key: QFMZQPDHXULLKC-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C26H24P2/c1-5-13-23(14-6-1)27(24-15-7-2-8-16-24)21-22-28(25-17-9-3-10-18-25)26-19-11-4-12-20-26/h1-20H,21-22H2
    Key: QFMZQPDHXULLKC-UHFFFAOYAX
  • P(c1ccccc1)(c2ccccc2)CCP(c3ccccc3)c4ccccc4
  • c1ccc(cc1)P(CCP(c2ccccc2)c3ccccc3)c4ccccc4
Properties
C26H24P2
Molar mass 398.42 g/mol
Melting point 140 to 142 °C (284 to 288 °F; 413 to 415 K)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-pollu.svg
Warning
H302, H315, H319, H332, H335, H410
P261, P264, P270, P271, P273, P280, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P312, P321, P330, P332+P313, P337+P313, P362, P391, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

1,2-Bis(diphenylphosphino)ethane (dppe) is an organophosphorus compound with the formula (Ph2PCH2)2 (Ph = phenyl). It is a commonly used bidentate ligand in coordination chemistry. It is a white solid that is soluble in organic solvents.

Contents

Preparation

The preparation of dppe is by the alkylation of NaPPh2: [1] [2]

P(C6H5)3 + 2 Na → NaP(C6H5)2 + NaC6H5

NaP(C6H5)2, which is readily air-oxidized, is treated with 1,2-dichloroethane (ClCH2CH2Cl) to give dppe:

2 NaP(C6H5)2 + ClCH2CH2Cl → (C6H5)2PCH2CH2P(C6H5)2 + 2 NaCl

Reactions

The reduction of dppe by lithium to give PhHP(CH2)2PHPh has been reported. [3]

Ph2P(CH2)2PPh2 + 4 Li → PhLiP(CH2)2PLiPh + 2 PhLi

Hydrolysis gives the bis(secondary phosphine):

PhLiP(CH2)2PLiPh + 2 PhLi + 4H2O → PhHP(CH2)2PHPh + 4 LiOH + 2 C6H6
The bis(dppe) complex HFeCl(dppe)2 is one of the most accessible transition metal hydrides. HFeCl dppe 2.svg
The bis(dppe) complex HFeCl(dppe)2 is one of the most accessible transition metal hydrides.

Treatment of dppe with conventional oxidants such as hydrogen peroxide (H2O2), aqueous bromine (Br2), etc., produces dppeO in low yield (e.g., 13%) as a result of non-selective oxidation. [4] Selective mono-oxidation of dppe can be achieved by reaction with PhCH2Br to give dppeO.

Ph2P(CH2)2PPh2 + PhCH2Br → Ph2P(CH2)2PPh2(CH2Ph)+Br

 

 

 

 

(2.3.)

Ph2P(CH2)2PPh2(CH2Ph)+Br + NaOH + H2O → Ph2P(CH2)2P(O)Ph2

 

 

 

 

(2.4.)

Hydrogenation of dppe gives the ligand bis(dicyclohexylphosphino)ethane.

Coordination complexes

Many coordination complexes of dppe are known, and some are used as homogeneous catalysts. Dppe is almost invariably chelating, although there are examples of monodentate (e.g., W(CO)5(dppe)) and of bridging behavior. [5] The natural bite angle is 86°. [6]

Related Research Articles

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Chloro(triphenylphosphine)gold(I)</span> Chemical compound

Chloro(triphenylphosphine)gold(I) or triphenylphosphinegold(I) chloride is a coordination complex with the formula (Ph3P)AuCl. This colorless solid is a common reagent for research on gold compounds.

Organophosphines are organophosphorus compounds with the formula PRnH3−n, where R is an organic substituent. These compounds can be classified according to the value of n: primary phosphines (n = 1), secondary phosphines (n = 2), tertiary phosphines (n = 3). All adopt pyramidal structures. Organophosphines are generally colorless, lipophilic liquids or solids. The parent of the organophosphines is phosphine (PH3).

<span class="mw-page-title-main">Dihydrogen complex</span> Containing intact H2 as a ligand

Dihydrogen complexes are coordination complexes containing intact H2 as a ligand. They are a subset of sigma complexes. The prototypical complex is W(CO)3(PCy3)2(H2). This class of compounds represent intermediates in metal-catalyzed reactions involving hydrogen. Hundreds of dihydrogen complexes have been reported. Most examples are cationic transition metals complexes with octahedral geometry.

<span class="mw-page-title-main">1,1'-Bis(diphenylphosphino)ferrocene</span> Chemical compound

1,1-Bis(diphenylphosphino)ferrocene, commonly abbreviated dppf, is an organophosphorus compound commonly used as a ligand in homogeneous catalysis. It contains a ferrocene moiety in its backbone, and is related to other bridged diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe).

<span class="mw-page-title-main">Diphosphines</span>

Diphosphines, sometimes called bisphosphanes, are organophosphorus compounds most commonly used as bidentate phosphine ligands in inorganic and organometallic chemistry. They are identified by the presence of two phosphino groups linked by a backbone, and are usually chelating. A wide variety of diphosphines have been synthesized with different linkers and R-groups. Alteration of the linker and R-groups alters the electronic and steric properties of the ligands which can result in different coordination geometries and catalytic behavior in homogeneous catalysts.

<span class="mw-page-title-main">Diphenylphosphine</span> Chemical compound

Diphenylphosphine, also known as diphenylphosphane, is an organophosphorus compound with the formula (C6H5)2PH. This foul-smelling, colorless liquid is easily oxidized in air. It is a precursor to organophosphorus ligands for use as catalysts.

<span class="mw-page-title-main">Chlorodiphenylphosphine</span> Chemical compound

Chlorodiphenylphosphine is an organophosphorus compound with the formula (C6H5)2PCl, abbreviated Ph2PCl. It is a colourless oily liquid with a pungent odor that is often described as being garlic-like and detectable even in the ppb range. It is useful reagent for introducing the Ph2P group into molecules, which includes many ligands. Like other halophosphines, Ph2PCl is reactive with many nucleophiles such as water and easily oxidized even by air.

<span class="mw-page-title-main">Bis(diphenylphosphino)methane</span> Chemical compound

1,1-Bis(diphenylphosphino)methane (dppm), is an organophosphorus compound with the formula CH2(PPh2)2. Dppm, a white, crystalline powder, is used in inorganic and organometallic chemistry as a ligand. It is more specifically a chelating ligand because it is a ligand that can bond to metals with two phosphorus donor atoms. The natural bite angle is 73°.

<span class="mw-page-title-main">1,3-Bis(diphenylphosphino)propane</span> Chemical compound

1,3-Bis(diphenylphosphino)propane (dppp) is an organophosphorus compound with the formula Ph2P(CH2)3PPh2. The compound is a white solid that is soluble in organic solvents. It is slightly air-sensitive, degrading in air to the phosphine oxide. It is classified as a diphosphine ligand in coordination chemistry and homogeneous catalysis.

<span class="mw-page-title-main">1,2-Bis(dimethylphosphino)ethane</span> Chemical compound

1,2-Bis(dimethylphosphino)ethane (dmpe) is a diphosphine ligand in coordination chemistry. It is a colorless, air-sensitive liquid that is soluble in organic solvents. With the formula (CH2PMe2)2, dmpe is used as a compact strongly basic spectator ligand (Me = methyl), Representative complexes include V(dmpe)2(BH4)2, Mn(dmpe)2(AlH4)2, Tc(dmpe)2(CO)2Cl, and Ni(dmpe)Cl2.

<span class="mw-page-title-main">Dichlorotris(triphenylphosphine)ruthenium(II)</span> Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Bis(dinitrogen)bis(1,2-bis(diphenylphosphino)ethane)molybdenum(0)</span> Chemical compound

trans-Bis(dinitrogen)bis[1,2-bis(diphenylphosphino)ethane]molybdenum(0) is a coordination complex with the formula Mo(N2)2(dppe)2. It is a relatively air stable yellow-orange solid. It is notable as being the first discovered dinitrogen containing complex of molybdenum.

<span class="mw-page-title-main">Chlorobis(dppe)iron hydride</span> Chemical compound

Chlorobis(dppe)iron hydride is a coordination complex with the formula HFeCl(dppe)2, where dppe is the bidentate ligand 1,2-bis(diphenylphosphino)ethane. It is a red-violet solid. The compound has attracted much attention as a precursor to dihydrogen complexes.

<span class="mw-page-title-main">Bis(diphenylphosphinoethyl)phenylphosphine</span> Chemical compound

Bis(diphenylphosphinoethyl)phenylphosphine is the organophosphorus compound with the formula [Ph2PCH2CH2]2PPh (Ph = C6H5). It is an air-sensitive white solid that function as tridentate ligands in coordination and organometallic chemistry.

<span class="mw-page-title-main">Lithium diphenylphosphide</span> Chemical compound

Lithium diphenylphosphide contains lithium and the organophosphorus anion with the formula (C6H5)2PLi. It is an air-sensitive solid that is used in the preparation of diphenylphosphino compounds. As an ether complex, the lithium salt is dark red.

<span class="mw-page-title-main">1,4-Bis(diphenylphosphino)butane</span> Chemical compound

1,4-Bis(diphenylphosphino)butane (dppb) is an organophosphorus compound with the formula (Ph2PCH2CH2)2. It is less commonly used in coordination chemistry than other diphosphine ligands such as dppe. It is a white solid that is soluble in organic solvents.

<span class="mw-page-title-main">Dichloro(1,2-bis(diphenylphosphino)ethane)nickel</span> Chemical compound

Dichloro[1,2-bis(diphenylphosphino)ethane]nickel is a coordination complex with the formula NiCl2(dppe); where dppe is the diphosphine 1,2-bis(diphenylphosphino)ethane. It is used as a reagent and as a catalyst. The compound is a bright orange-red diamagnetic solid. The complex adopts a square planar geometry.

cis-1,2-Bis(diphenylphosphino)ethylene (dppv) is an organophosphorus compound with the formula C2H2(PPh2)2 (Ph = C6H5). Both the cis and trans isomers are known, but the cis isomer is of primary interest. Classified as a diphosphine ligand, it is a bidentate ligand in coordination chemistry. For example it gives rise to the complex Ni(dppv)2 and the coordination polymer [Ni(dppv)]n. As a chelating ligand, dppv is very similar to 1,2-bis(diphenylphosphino)benzene.

References

  1. W. Hewertson and H. R. Watson (1962). "283. The preparation of di- and tri-tertiary phosphines". J. Chem. Soc. : 1490–1494. doi:10.1039/JR9620001490.
  2. Girolami, G.; Rauchfuss, T.; Angelici, R. Synthesis and Technique in Inorganic Chemistry, 3rd ed.; University Science Books: Sausalito, CA, 1999; pp. 85-92. ISBN   0-935702-48-2
  3. Dogan, J.; Schulte, J.B.; Swiegers, G.F.; Wild, S.B. (2000). "Mechanism of Phosphorus-Carbon Bond Cleavage by Lithium in Tertiary Phosphines. An Optimized Synthesis of 1, 2-Bis (phenylphosphino) ethane". J. Org. Chem. 65 (4): 951–957. doi:10.1021/jo9907336. PMID   10814038.
  4. Encyclopedia of Reagents for Organic Synthesis 2001 John Wiley & Sons, Ltd
  5. Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed.; Wiley-Interscience Publications: New York, NY, 1980; p.246. ISBN   0-471-02775-8
  6. Birkholz (née Gensow), Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W. N. M. (2009). "Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reactions". Chemical Society Reviews. 38 (4): 1099–1118. doi:10.1039/B806211K. PMID   19421583.