ABI Solid Sequencing

Last updated
Library preparation for the SOLiD platform Library preparation for the SOLiD platform.svg
Library preparation for the SOLiD platform
Two-base encoding scheme. In two-base encoding, each unique pair of bases on the 3' end of the probe is assigned one out of four possible colors. For example, "AA" is assigned to blue, "AC" is assigned to green, and so on for all 16 unique pairs. During sequencing, each base in the template is sequenced twice, and the resulting data are decoded according to this scheme. Two-base encoding scheme.png
Two-base encoding scheme. In two-base encoding, each unique pair of bases on the 3' end of the probe is assigned one out of four possible colors. For example, "AA" is assigned to blue, "AC" is assigned to green, and so on for all 16 unique pairs. During sequencing, each base in the template is sequenced twice, and the resulting data are decoded according to this scheme.

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is a next-generation DNA sequencing technology developed by Life Technologies and has been commercially available since 2006. This next generation technology generates 108 - 109 small sequence reads at one time. It uses 2 base encoding to decode the raw data generated by the sequencing platform into sequence data.

Contents

This method should not be confused with "sequencing by synthesis," a principle used by Roche-454 pyrosequencing (introduced in 2005, generating millions of 200-400bp reads in 2009), and the Solexa system (now owned by Illumina) (introduced in 2006, generating hundreds of millions of 50-100bp reads in 2009)

These methods have reduced the cost from $0.01/base in 2004 to nearly $0.0001/base in 2006 and increased the sequencing capacity from 1,000,000 bases/machine/day in 2004 to more than 5,000,000,000 bases/machine/day in 2009. Over 30 publications exist describing its use first for nucleosome positioning from Valouev et al., [1] transcriptional profiling or strand sensitive RNA-Seq with Cloonan et al., [2] single cell transcriptional profiling with Tang et al. [3] and ultimately human resequencing with McKernan et al. [4]

The method used by this machine (sequencing-by-ligation) has been reported to have some issue sequencing palindromic sequences. [5]

Chemistry

A library of DNA fragments is prepared from the sample to be sequenced, and is used to prepare clonal bead populations. That is, only one species of fragment will be present on the surface of each magnetic bead. The fragments attached to the magnetic beads will have a universal P1 adapter sequence attached so that the starting sequence of every fragment is both known and identical. Emulsion PCR takes place in microreactors containing all the necessary reagents for PCR. The beads with the resulting PCR products are deposited to a glass slide.

Primers hybridize to the P1 adapter sequence within the library template. A set of four fluorescently labelled di-base probes compete for ligation to the sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st and 2nd base in each ligation reaction. Multiple cycles of ligation, detection and cleavage are performed with the number of cycles determining the eventual read length. Following a series of ligation cycles, the extension product is removed and the template is reset with a primer complementary to the n-1 position for a second round of ligation cycles.

Five rounds of primer reset are completed for each sequence tag. Through the primer reset process, each base is interrogated in two independent ligation reactions by two different primers. For example, the base at read position 5 is assayed by primer number 2 in ligation cycle 2 and by primer number 3 in ligation cycle 1.

Throughput & Accuracy

According to ABI, the SOLiD 3plus platform yields 60 gigabases of usable DNA data per run. Due to the two base encoding system, an inherent accuracy check is built into the technology and offers 99.94% accuracy. The chemistry of the systems also means that it is not hindered by homopolymers unlike the Roche 454 FLX system and so large and difficult homopolymer repeat regions are no longer a problem to sequence.

Applications

Naturally the technology will be used to sequence DNA, but because of the high parallel nature of all next generation technologies they also have applications in transcriptomics and epigenomics.

Microarrays was once the mainstay of the transcriptomics the last ten years and array based technology has subsequently branched out to other areas. However, they are limited in that only information can be obtained for probes that are on the chip. Only information for organisms for which chips are available can obtained, and they come with all the problems of hybridizing large numbers of molecules (differing hybridizing temperatures). RNA-Seq transcriptomics by next gen sequencing will mean these barriers no longer hold true. Any organism's entire transcriptome could be potentially sequenced in one run (for very small bacterial genomes) and not only would the identification of each transcript be available but expression profiling is possible as quantitative reads can also be achieved.

Chromatin immunoprecipitation (ChIP) is a method for determining transcription factor binding sites and DNA-protein interactions. It has in the past been combined with array technology (ChIP-chip) with some success. Next gen sequencing can also be applied in this area. Methylation immunoprecipitation (MeDIP) can also be performed and also on arrays.

The ability to learn more about methylation and TF binding sites on a genome wide scale is a valuable resource and could teach us much about disease and molecular biology in general.

See also

Related Research Articles

<span class="mw-page-title-main">Complementary DNA</span> DNA reverse transcribed from RNA

In genetics, complementary DNA (cDNA) is DNA that was reverse transcribed from an RNA. cDNA exists in both single-stranded and double-stranded forms and in both natural and engineered forms.

In genetics and biochemistry, sequencing means to determine the primary structure of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succinctly summarizes much of the atomic-level structure of the sequenced molecule.

The transcriptome is the set of all RNA transcripts, including coding and non-coding, in an individual or a population of cells. The term can also sometimes be used to refer to all RNAs, or just mRNA, depending on the particular experiment. The term transcriptome is a portmanteau of the words transcript and genome; it is associated with the process of transcript production during the biological process of transcription.

<span class="mw-page-title-main">DNA sequencing</span> Process of determining the nucleic acid sequence

DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery.

<span class="mw-page-title-main">Serial analysis of gene expression</span> Molecular biology technique

Serial Analysis of Gene Expression (SAGE) is a transcriptomic technique used by molecular biologists to produce a snapshot of the messenger RNA population in a sample of interest in the form of small tags that correspond to fragments of those transcripts. Several variants have been developed since, most notably a more robust version, LongSAGE, RL-SAGE and the most recent SuperSAGE. Many of these have improved the technique with the capture of longer tags, enabling more confident identification of a source gene.

<span class="mw-page-title-main">2 base encoding</span>

2 Base Encoding, also called SOLiD, is a next-generation sequencing technology developed by Applied Biosystems and has been commercially available since 2008. These technologies generate hundreds of thousands of small sequence reads at one time. Well-known examples of such DNA sequencing methods include 454 pyrosequencing, the Solexa system and the SOLiD system. These methods have reduced the cost from $0.01/base in 2004 to nearly $0.0001/base in 2006 and increased the sequencing capacity from 1,000,000 bases/machine/day in 2004 to more than 100,000,000 bases/machine/day in 2006.

<span class="mw-page-title-main">RNA-Seq</span> Lab technique in cellular biology

RNA-Seq is a technique that uses next-generation sequencing to reveal the presence and quantity of RNA molecules in a biological sample, providing a snapshot of gene expression in the sample, also known as transcriptome.

Cap analysis of gene expression (CAGE) is a gene expression technique used in molecular biology to produce a snapshot of the 5′ end of the messenger RNA population in a biological sample. The small fragments from the very beginnings of mRNAs are extracted, reverse-transcribed to cDNA, PCR amplified and sequenced. CAGE was first published by Hayashizaki, Carninci and co-workers in 2003. CAGE has been extensively used within the FANTOM research projects.

Paired-end tags (PET) are the short sequences at the 5’ and 3' ends of a DNA fragment which are unique enough that they (theoretically) exist together only once in a genome, therefore making the sequence of the DNA in between them available upon search or upon further sequencing. Paired-end tags (PET) exist in PET libraries with the intervening DNA absent, that is, a PET "represents" a larger fragment of genomic or cDNA by consisting of a short 5' linker sequence, a short 5' sequence tag, a short 3' sequence tag, and a short 3' linker sequence. It was shown conceptually that 13 base pairs are sufficient to map tags uniquely. However, longer sequences are more practical for mapping reads uniquely. The endonucleases used to produce PETs give longer tags but sequences of 50–100 base pairs would be optimal for both mapping and cost efficiency. After extracting the PETs from many DNA fragments, they are linked (concatenated) together for efficient sequencing. On average, 20–30 tags could be sequenced with the Sanger method, which has a longer read length. Since the tag sequences are short, individual PETs are well suited for next-generation sequencing that has short read lengths and higher throughput. The main advantages of PET sequencing are its reduced cost by sequencing only short fragments, detection of structural variants in the genome, and increased specificity when aligning back to the genome compared to single tags, which involves only one end of the DNA fragment.

Polony sequencing is an inexpensive but highly accurate multiplex sequencing technique that can be used to “read” millions of immobilized DNA sequences in parallel. This technique was first developed by Dr. George Church's group at Harvard Medical School. Unlike other sequencing techniques, Polony sequencing technology is an open platform with freely downloadable, open source software and protocols. Also, the hardware of this technique can be easily set up with a commonly available epifluorescence microscopy and a computer-controlled flowcell/fluidics system. Polony sequencing is generally performed on paired-end tags library that each molecule of DNA template is of 135 bp in length with two 17–18 bp paired genomic tags separated and flanked by common sequences. The current read length of this technique is 26 bases per amplicon and 13 bases per tag, leaving a gap of 4–5 bases in each tag.

Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing. Some of these technologies emerged between 1993 and 1998 and have been commercially available since 2005. These technologies use miniaturized and parallelized platforms for sequencing of 1 million to 43 billion short reads per instrument run.

De novo transcriptome assembly is the de novo sequence assembly method of creating a transcriptome without the aid of a reference genome.

Magnetic sequencing is a single-molecule sequencing method in development. A DNA hairpin, containing the sequence of interest, is bound between a magnetic bead and a glass surface. A magnetic field is applied to stretch the hairpin open into single strands, and the hairpin refolds after decreasing of the magnetic field. The hairpin length can be determined by direct imaging of the diffraction rings of the magnetic beads using a simple microscope. The DNA sequences are determined by measuring the changes in the hairpin length following successful hybridization of complementary nucleotides.

Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. For example, in cancer, sequencing the DNA of individual cells can give information about mutations carried by small populations of cells. In development, sequencing the RNAs expressed by individual cells can give insight into the existence and behavior of different cell types. In microbial systems, a population of the same species can appear genetically clonal. Still, single-cell sequencing of RNA or epigenetic modifications can reveal cell-to-cell variability that may help populations rapidly adapt to survive in changing environments.

G&T-seq is a novel form of single cell sequencing technique allowing one to simultaneously obtain both transcriptomic and genomic data from single cells, allowing for direct comparison of gene expression data to its corresponding genomic data in the same cell...

<span class="mw-page-title-main">Duplex sequencing</span>

Duplex sequencing is a library preparation and analysis method for next-generation sequencing (NGS) platforms that employs random tagging of double-stranded DNA to detect mutations with higher accuracy and lower error rates.

<span class="mw-page-title-main">Epitranscriptomic sequencing</span>

In epitranscriptomic sequencing, most methods focus on either (1) enrichment and purification of the modified RNA molecules before running on the RNA sequencer, or (2) improving or modifying bioinformatics analysis pipelines to call the modification peaks. Most methods have been adapted and optimized for mRNA molecules, except for modified bisulfite sequencing for profiling 5-methylcytidine which was optimized for tRNAs and rRNAs.

Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. Here, mRNA serves as a transient intermediary molecule in the information network, whilst non-coding RNAs perform additional diverse functions. A transcriptome captures a snapshot in time of the total transcripts present in a cell. Transcriptomics technologies provide a broad account of which cellular processes are active and which are dormant. A major challenge in molecular biology is to understand how a single genome gives rise to a variety of cells. Another is how gene expression is regulated.

<span class="mw-page-title-main">Spatial transcriptomics</span> Range of methods designed for assigning cell types

Spatial transcriptomics is a method for assigning cell types to their locations in the histological sections and can also be used to determine subcellular localization of mRNA molecules. First described in 2016 by Ståhl et al., it has since undergone a variety of improvements and modifications.

CITE-Seq is a method for performing RNA sequencing along with gaining quantitative and qualitative information on surface proteins with available antibodies on a single cell level. So far, the method has been demonstrated to work with only a few proteins per cell. As such, it provides an additional layer of information for the same cell by combining both proteomics and transcriptomics data. For phenotyping, this method has been shown to be as accurate as flow cytometry by the groups that developed it. It is currently one of the main methods, along with REAP-Seq, to evaluate both gene expression and protein levels simultaneously in different species.

References

  1. Valouev A, Ichikawa J, Tonthat T, et al. (July 2008). "A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning". Genome Research. 18 (7): 1051–63. doi:10.1101/gr.076463.108. PMC   2493394 . PMID   18477713.
  2. Cloonan N, Forrest AR, Kolle G, et al. (July 2008). "Stem cell transcriptome profiling via massive-scale mRNA sequencing". Nature Methods. 5 (7): 613–9. doi:10.1038/nmeth.1223. PMID   18516046. S2CID   19790151.
  3. Tang F, Barbacioru C, Wang Y, et al. (May 2009). "mRNA-Seq whole-transcriptome analysis of a single cell". Nature Methods. 6 (5): 377–82. doi:10.1038/nmeth.1315. PMID   19349980. S2CID   16570747.
  4. McKernan KJ, Peckham HE, Costa GL, et al. (September 2009). "Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding". Genome Research. 19 (9): 1527–41. doi:10.1101/gr.091868.109. PMC   2752135 . PMID   19546169.
  5. Yu-Feng Huang; Sheng-Chung Chen; Yih-Shien Chiang & Tzu-Han Chen (2012). "Palindromic sequence impedes sequencing-by-ligation mechanism". BMC Systems Biology . 6 (Suppl 2): S10. doi: 10.1186/1752-0509-6-S2-S10 . PMC   3521181 . PMID   23281822.

Further reading