Abuse of notation

Last updated

In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors and confusion at the same time). However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. Abuse of notation should be contrasted with misuse of notation, which does not have the presentational benefits of the former and should be avoided (such as the misuse of constants of integration [1] ).

Contents

A related concept is abuse of language or abuse of terminology, where a term — rather than a notation — is misused. Abuse of language is an almost synonymous expression for abuses that are non-notational by nature. For example, while the word representation properly designates a group homomorphism from a group G to GL(V), where V is a vector space, it is common to call V "a representation of G". Another common abuse of language consists in identifying two mathematical objects that are different, but canonically isomorphic. [2] Other examples include identifying a constant function with its value, identifying a group with a binary operation with the name of its underlying set, or identifying to the Euclidean space of dimension three equipped with a Cartesian coordinate system. [3]

Examples

Structured mathematical objects

Many mathematical objects consist of a set, often called the underlying set, equipped with some additional structure, such as a mathematical operation or a topology. It is a common abuse of notation to use the same notation for the underlying set and the structured object (a phenomenon known as suppression of parameters [3] ). For example, may denote the set of the integers, the group of integers together with addition, or the ring of integers with addition and multiplication. In general, there is no problem with this if the object under reference is well understood, and avoiding such an abuse of notation might even make mathematical texts more pedantic and more difficult to read. When this abuse of notation may be confusing, one may distinguish between these structures by denoting the group of integers with addition, and the ring of integers.

Similarly, a topological space consists of a set X (the underlying set) and a topology which is characterized by a set of subsets of X (the open sets). Most frequently, one considers only one topology on X, so there is usually no problem in referring X as both the underlying set, and the pair consisting of X and its topology — even though they are technically distinct mathematical objects. Nevertheless, it could occur on some occasions that two different topologies are considered simultaneously on the same set. In which case, one must exercise care and use notation such as and to distinguish between the different topological spaces.

Function notation

One may encounter, in many textbooks, sentences such as "Let be a function ...". This is an abuse of notation, as the name of the function is and denotes the value of for the element of its domain. More precisely correct phrasings include "Let be a function of the variable ..." or "Let be a function ..." This abuse of notation is widely used, as it simplifies the formulation, and the systematic use of a correct notation quickly becomes pedantic.

A similar abuse of notation occurs in sentences such as "Let us consider the function ...", when in fact is a polynomial expression, not a function per se. The function that associates to can be denoted Nevertheless, this abuse of notation is widely used, since it is more concise but generally not confusing.

Equality vs. isomorphism

Many mathematical structures are defined through a characterizing property (often a universal property). Once this desired property is defined, there may be various ways to construct the structure, and the corresponding results are formally different objects, but which have exactly the same properties (i.e., isomorphic). As there is no way to distinguish these isomorphic objects through their properties, it is standard to consider them as equal, even if this is formally wrong. [2]

One example of this is the Cartesian product, which is often seen as associative:

.

But this is strictly speaking not true: if , and , the identity would imply that and , and so would mean nothing. However, these equalities can be legitimized and made rigorous in category theory—using the idea of a natural isomorphism.

Another example of similar abuses occurs in statements such as "there are two non-Abelian groups of order 8", which more strictly stated means "there are two isomorphism classes of non-Abelian groups of order 8".

Equivalence classes

Referring to an equivalence class of an equivalence relation by x instead of [x] is an abuse of notation. Formally, if a set X is partitioned by an equivalence relation ~, then for each xX, the equivalence class {yX | y ~ x} is denoted [x]. But in practice, if the remainder of the discussion is focused on the equivalence classes rather than the individual elements of the underlying set, then it is common to drop the square brackets in the discussion.

For example, in modular arithmetic, a finite group of order n can be formed by partitioning the integers via the equivalence relation "x ~ y if and only if xy (mod n)". The elements of that group would then be [0], [1], ..., [n − 1], but in practice they are usually denoted simply as 0, 1, ..., n − 1.

Another example is the space of (classes of) measurable functions over a measure space, or classes of Lebesgue integrable functions, where the equivalence relation is equality "almost everywhere".

Subjectivity

The terms "abuse of language" and "abuse of notation" depend on context. Writing "f : AB" for a partial function from A to B is almost always an abuse of notation, but not in a category theoretic context, where f can be seen as a morphism in the category of sets and partial functions.

See also

Related Research Articles

In mathematics, one can often define a direct product of objects already known, giving a new one. This induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. More abstractly, one talks about the product in category theory, which formalizes these notions.

<span class="mw-page-title-main">Equivalence class</span> Mathematical concept

In mathematics, when the elements of some set have a notion of equivalence, then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

<span class="mw-page-title-main">Partially ordered set</span> Mathematical set with an ordering

In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.

<span class="mw-page-title-main">Direct limit</span> Special case of colimit in category theory

In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by .

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

<span class="mw-page-title-main">Image (mathematics)</span> Set of all values of a function

In mathematics, the image of a function is the set of all output values it may produce.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

This is a glossary of algebraic geometry.

References

  1. "Common Errors in College Math". math.vanderbilt.edu. Retrieved 2019-11-03.
  2. 1 2 "Glossary — Abuse of notation". www.abstractmath.org. Retrieved 2019-11-03.
  3. 1 2 "More about the languages of math — Suppression of parameters". www.abstractmath.org. Retrieved 2019-11-03.