Akinetopsia

Last updated

Akinetopsia (from Greek akinesia 'absence of movement' and opsis 'seeing'), [1] also known as cerebral akinetopsia or motion blindness, is a term introduced by Semir Zeki to describe an extremely rare neuropsychological disorder, having only been documented in a handful of medical cases, in which a patient cannot perceive motion in their visual field, despite being able to see stationary objects without issue. [2] The syndrome is the result of damage to visual area V5, whose cells are specialized to detect directional visual motion. [3] [4] There are varying degrees of akinetopsia: from seeing motion as frames of a cinema reel [5] to an inability to discriminate any motion. There is currently no effective treatment or cure for akinetopsia.

Contents

Signs and symptoms

Akinetopsia can manifest in a spectrum of severity and some cases may be episodic or temporary. [6] It may range from "inconspicuous akinetopsia" to "gross akinetopsia", based on symptom severity and the amount the akinetopsia affects the patient's quality of life.

Inconspicuous akinetopsia

Inconspicuous akinetopsia is often described by seeing motion as a cinema reel or a multiple exposure photograph. This is the most common kind of akinetopsia and many patients consider the stroboscopic vision as a nuisance. The akinetopsia often occurs with visual trailing (palinopsia), with afterimages being left at each frame of the motion. It is caused by prescription drugs, hallucinogen persisting perception disorder (HPPD), and persistent aura without infarction. The pathophysiology of akinetopsia palinopsia is not known, but it has been hypothesized to be due to inappropriate activation of physiological motion suppression mechanisms which are normally used to maintain visual stability during eye movements (e.g. saccadic suppression). [7] [8]

Gross akinetopsia

Gross akinetopsia is an extremely rare condition. Patients have profound motion blindness and struggle in performing the activities of daily living. Instead of seeing vision as a cinema reel, these patients have trouble perceiving gross motion. Most of what is known about this extremely rare condition was learned through the case study of one patient, LM. LM described pouring a cup of tea or coffee difficult "because the fluid appeared to be frozen, like a glacier". [9] She did not know when to stop pouring, because she could not perceive the movement of the fluid rising. LM and other patients have also complained of having trouble following conversations, because lip movements and changing facial expressions were missed. [9] [10] LM stated she felt insecure when more than two people were walking around in a room: "people were suddenly here or there but I have not seen them moving". [9] Movement is inferred by comparing the change in position of an object or person. LM and others have described crossing the street and driving cars to also be of great difficulty. [9] [10] The patient was still able to perceive movement of auditory and tactile stimuli. [11]

A change in brain structure (typically lesions) disturbs the psychological process of understanding sensory information, in this case visual information. Disturbance of only visual motion is possible due to the anatomical separation of visual motion processing from other functions. Like akinetopsia, perception of color can also be selectively disturbed as in achromatopsia. [2] There is an inability to see motion despite normal spatial acuity, flicker detection, stereo and color vision. Other intact functions include visual space perception and visual identification of shapes, objects, and faces. [12] Besides simple perception, akinetopsia also disturbs visuomotor tasks, such as reaching for objects [13] and catching objects. [14] When doing tasks, feedback of one's own motion appears to be important. [14]

Causes

Brain lesions

Akinetopsia may be an acquired deficit from lesions in the posterior side of the visual cortex. Lesions more often cause gross akinetopsia. The neurons of the middle temporal cortex respond to moving stimuli and hence the middle temporal cortex is the motion-processing area of the cerebral cortex. In the case of LM, the brain lesion was bilateral and symmetrical, and at the same time small enough not to affect other visual functions. [15] Some unilateral lesions have been reported to impair motion perception as well. Akinetopsia through lesions is rare, because damage to the occipital lobe usually disturbs more than one visual function. [9] Akinetopsia has also been reported as a result of traumatic brain injury. [10]

Transcranial magnetic stimulation

Inconspicuous akinetopsia can be selectively and temporarily induced using transcranial magnetic stimulation (TMS) of area V5 of the visual cortex in healthy subjects. [16] It is performed on a 1 cm² surface of the head, corresponding in position to area V5. With an 800-microsecond TMS pulse and a 28 ms stimulus at 11 degrees per second, V5 is incapacitated for about 20–30 ms. It is effective between −20 ms and +10 ms before and after onset of a moving visual stimulus. Inactivating V1 with TMS could induce some degree of akinetopsia 60–70 ms after the onset of the visual stimulus. TMS of V1 is not nearly as effective in inducing akinetopsia as TMS of V5. [16]

Alzheimer's disease

Besides memory problems, Alzheimer's patients may have varying degrees of akinetopsia. [17] This could contribute to their marked disorientation. While Pelak and Hoyt have recorded an Alzheimer's case study, there has not been much research done on the subject yet. [10]

Antidepressants

Inconspicuous akinetopsia can be triggered by high doses of certain antidepressants [18] with vision returning to normal once the dosage is reduced.

Areas of visual perception

Two relevant visual areas for motion processing are V5 and V1. These areas are separated by their function in vision. [19] A functional area is a set of neurons with common selectivity and stimulation of this area, specifically behavioral influences. [20] There have been over 30 specialized processing areas found in the visual cortex. [21]

V5

V5, also known as visual area MT (middle temporal), is located laterally and ventrally in the temporal lobe, near the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus. All of the neurons in V5 are motion selective, and most are directionally selective. [2] Evidence of functional specialization of V5 was first found in primates. [12] Patients with akinetopsia tend to have unilateral or bi-lateral damage to the V5. [22] [23]

V1

V1, also known as the primary visual cortex, is located in Brodmann area 17. V1 is known for its pre-processing capabilities of visual information; however, it is no longer considered the only perceptually effective gateway to the cortex. [16] Motion information can reach V5 without passing through V1 and a return input from V5 to V1 is not required for seeing simple visual motion. [16] Motion-related signals arrive at V1 (60–70 ms) and V5 (< 30 ms) at different times, with V5 acting independently of V1. [16] Patients with blindsight have damage to V1, but because V5 is intact, they can still sense motion. [21] Inactivating V1 limits motion vision, but does not stop it completely. [16]

Ventral and dorsal streams

Another thought on visual brain organization is the theory of streams for spatial vision, the ventral stream for perception and the dorsal stream for action. [13] Since LM has impairment in both perception and action (such as grasping and catching actions), it has been suggested that V5 provides input to both perception and action processing streams. [13] [14]

Case studies

Potzl and Redlich's patient

In 1911, Potzl and Redlich reported a 58-year-old female patient with bilateral damage to her posterior brain. [2] She described motion as if the object remained stationary but appeared at different successive positions. Additionally, she also lost a significant amount of her visual field and had anomic aphasia.[ citation needed ]

Goldstein and Gelb's patient

In 1918, Goldstein and Gelb reported a 24-year-old male who suffered a gunshot wound in the posterior brain. [2] The patient reported no impression of movement. He could state the new position of the object (left, right, up, down), but saw "nothing in between". [2] While Goldestein and Gelb believed the patient had damaged the lateral and medial parts of the left occipital lobe, it was later indicated that both occipital lobes were probably affected, due to the bilateral, concentric loss of his visual field. He lost his visual field beyond a 30-degree eccentricity and could not identify visual objects by their proper names. [2]

"LM"

Most of what is known about akinetopsia was learned from LM, a 43-year-old female admitted into the hospital October 1978 complaining of headache and vertigo. [9] LM was diagnosed with thrombosis of the superior sagittal sinus which resulted in bilateral, symmetrical lesions posterior of the visual cortex. [9] These lesions were verified by PET and MRI in 1994. [12] LM had minimal motion perception that was preserved as perhaps a function of V1, as a function of a "higher" order visual cortical area, or some functional sparing of V5. [2] [15]

LM found no effective treatment, so she learned to avoid conditions with multiple visual motion stimuli, i.e. by not looking at or fixating them. She developed very efficient coping strategies to do this and nevertheless lived her life. In addition, she estimated the distance of moving vehicles by means of sound detection in order to continue to cross the street. [9] [15]

LM was tested in three areas against a 24-year-old female subject with normal vision:

Visual functions other than movement vision

LM had no evidence of a color discrimination deficit in either center or periphery of visual fields. Her recognition time for visual objects and words was slightly higher than the control, but not statistically significant. There was no restriction in her visual field and no scotoma.[ citation needed ]

Disturbance of movement vision

LM's impression of movement depended on the direction of the movement (horizontal vs vertical), the velocity, and whether she fixated in the center of the motion path or tracked the object with her eyes. Circular light targets were used as stimuli.[ citation needed ]

In studies, LM reported some impression of horizontal movement at a speed of 14 degrees of her predetermined visual field per second (deg/s) while fixating in the middle of the motion path, with difficulty seeing motion both below and above this velocity. When allowed to track the moving spot, she had some horizontal movement vision up to 18 deg/s. For vertical movement, the patient could only see motion below 10 deg/s fixated or 13 deg/s when tracking the target. The patient described her perceptual experience for stimulus velocities higher than 18 and 13 deg/s, respectively as "one light spot left or right" or "one light spot up or down" and "sometimes at successive positions in between", but never as motion. [9]

Motion in depth

To determine perception of motion in depth, studies were done in which the experimenter moved a black painted wooden cube on a tabletop either towards the patient or away in line of sight. After 20 trials at 3 or 6 deg/s, the patient had no clear impression of movement. However she knew the object had changed in position, she knew the size of the cube, and she could correctly judge the distance of the cube in relation to other nearby objects. [9]

Inner and outer visual fields

Detection of movement in the inner and outer visual fields was tested. Within her inner visual field, LM could detect some motion, with horizontal motion more easily distinguished than vertical motion. In her peripheral visual field, the patient was never able to detect any direction of movement. LM's ability to judge velocities was also tested. LM underestimated velocities over 12 deg/s. [9]

Motion aftereffect and Phi phenomenon

Motion aftereffect of vertical stripes moving in a horizontal direction and a rotating spiral were tested. She was able to detect motion in both patterns, but reported motion aftereffect in only 3 of the 10 trials for the stripes, and no effect for the rotating spiral. She also never reported any impression of motion in depth of the spiral. In Phi phenomenon two circular spots of light appear alternating. It appears that the spot moves from one location to the other. Under no combination of conditions did the patient report any apparent movement. She always reported two independent light spots. [9]

Visually guided pursuit eye and finger movements

LM was to follow the path of a wire mounted onto a board with her right index finger. The test was performed under purely tactile (blindfolded), purely visual (glass over the board), or tactile-visual condition. The patient performed best in the purely tactile condition and very poorly in the visual condition. She did not benefit from the visual information in the tactile-visual condition either. The patient reported that the difficulty was between her finger and her eyes. She could not follow her finger with her eyes if she moved her finger too fast. [9]

Additional experiments

In 1994, several other observations of LM's capabilities were made using a stimulus with a random distribution of light squares on a dark background that moved coherently. [12] With this stimulus, LM could always determine the axis of motion (vertical, horizontal), but not always the direction. If a few static squares were added to the moving display, identification of direction fell to chance, but identification of the axis of motion was still accurate. If a few squares were moving opposite and orthogonal to the predominant direction, her performance on both direction and axis fell to chance. She was also unable to identify motion in oblique directions, such as 45, 135, 225, and 315 degrees, and always gave answers in cardinal directions, 0, 90, 180, and 270 degrees. [12]

"TD"

In 2019, Heutink and colleagues described a 37-year old female patient (TD) with akinetopsia, who was admitted to Royal Dutch Visio, Centre of Expertise for blind and partially sighted people. TD suffered an ischaemic infarction of the occipitotemporal region in the right hemisphere and a smaller infarction in the left occipital hemisphere. [24] MRI confirmed that the damaged brain areas contained area V5 in both hemispheres. TD experienced problems with perceiving visual motion and also reported that bright colours and sharp contrasts made her feel sick. TD also had problems perceiving objects that were more than ± 5 meters away from her. Although TD had some impairments of lower visual functions, these could not explain the problems she experienced with regard to motion perception. Neuropsychological assessment revealed no evidence of Balint's Syndrome, hemispatial neglect or visual extinction, prosopagnosia or object agnosia. There was some evidence for impaired spatial processing. On several behavioural tests, TD showed a specific and selective impairment of motion perception that was comparable to LM's performance.[ citation needed ]

TD's ability to determine the direction of movement was tested using a task in which small grey blocks all moved in the same direction with the same speed against a black background. The blocks could move in four directions: right to left, left to right, upward and downward. Speed of movement was varied from 2, 4.5, 9, 15 and 24 degrees per second. Speed and direction were varied randomly across trials. TD had perfect perception of motion direction at speed up to 9 degrees per second. When speed of targets was above 9 degrees per second, TD's performance dropped dramatically to 50% correct at a speed of 15 degrees per second and 0% correct at 24 degrees per second. When the blocks moved at 24 degrees per second, TD consistently reported the exact opposite direction of the actual movement. [24]

Pelak and Hoyt's Alzheimer's patient

In 2000, a 70-year-old man presented with akinetopsia. He had stopped driving two years prior because he could no longer "see movement while driving". [10] His wife noted that he could not judge the speed of another car or how far away it was. He had difficulty watching television with significant action or movement, such as sporting events or action-filled TV shows. He frequently commented to his wife that he could not "see anything going on". [10] When objects began to move they would disappear. He could, however, watch the news, because no significant action occurred. In addition he had signs of Balint's syndrome (mild simultanagnosia, optic ataxia, and optic apraxia). [10]

Pelak and Hoyt's TBI patient

In 2003, a 60-year-old man complained of the inability to perceive visual motion following a traumatic brain injury, two years prior, in which a large cedar light pole fell and struck his head. [10] He gave examples of his difficulty as a hunter. He was unable to notice game, to track other hunters, or to see his dog coming towards him. Instead, these objects would appear in one location and then another, without any movement being seen between the two locations. He had difficulties driving and following a group conversation. He lost his place when vertically or horizontally scanning a written document and was unable to visualize three-dimensional images from two-dimensional blueprints. [10]

Related Research Articles

<span class="mw-page-title-main">Visual cortex</span> Region of the brain that processes visual information

The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 (V1), Brodmann area 17, or the striate cortex. The extrastriate areas consist of visual areas 2, 3, 4, and 5.

Blindsight is the ability of people who are cortically blind to respond to visual stimuli that they do not consciously see due to lesions in the primary visual cortex, also known as the striate cortex or Brodmann Area 17. The term was coined by Lawrence Weiskrantz and his colleagues in a paper published in a 1974 issue of Brain. A previous paper studying the discriminatory capacity of a cortically blind patient was published in Nature in 1973. The assumed existence of blindsight is controversial, with some arguing that it is merely degraded conscious vision.

<span class="mw-page-title-main">Visual system</span> Body parts responsible for vision

The visual system is the physiological basis of visual perception. The system detects, transduces and interprets information concerning light within the visible range to construct an image and build a mental model of the surrounding environment. The visual system is associated with the eye and functionally divided into the optical system and the neural system.

<span class="mw-page-title-main">Occipital lobe</span> Part of the brain at the back of the head

The occipital lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The name derives from its position at the back of the head, from the Latin ob, 'behind', and caput, 'head'.

<span class="mw-page-title-main">Neuroesthetics</span> Sub-discipline of empirical aesthetics

Neuroesthetics is a relatively recent sub-discipline of applied aesthetics. Empirical aesthetics takes a scientific approach to the study of aesthetic experience of art, music, or any object that can give rise to aesthetic judgments. Neuroesthetics is a term coined by Semir Zeki in 1999 and received its formal definition in 2002 as the scientific study of the neural bases for the contemplation and creation of a work of art. Neuroesthetics uses neuroscience to explain and understand the aesthetic experiences at the neurological level. The topic attracts scholars from many disciplines including neuroscientists, art historians, artists, art therapists and psychologists.

<span class="mw-page-title-main">Motion perception</span> Inferring the speed and direction of objects

Motion perception is the process of inferring the speed and direction of elements in a scene based on visual, vestibular and proprioceptive inputs. Although this process appears straightforward to most observers, it has proven to be a difficult problem from a computational perspective, and difficult to explain in terms of neural processing.

Cortical blindness is the total or partial loss of vision in a normal-appearing eye caused by damage to the brain's occipital cortex. Cortical blindness can be acquired or congenital, and may also be transient in certain instances. Acquired cortical blindness is most often caused by loss of blood flow to the occipital cortex from either unilateral or bilateral posterior cerebral artery blockage and by cardiac surgery. In most cases, the complete loss of vision is not permanent and the patient may recover some of their vision. Congenital cortical blindness is most often caused by perinatal ischemic stroke, encephalitis, and meningitis. Rarely, a patient with acquired cortical blindness may have little or no insight that they have lost vision, a phenomenon known as Anton–Babinski syndrome.

The two-streams hypothesis is a model of the neural processing of vision as well as hearing. The hypothesis, given its initial characterisation in a paper by David Milner and Melvyn A. Goodale in 1992, argues that humans possess two distinct visual systems. Recently there seems to be evidence of two distinct auditory systems as well. As visual information exits the occipital lobe, and as sound leaves the phonological network, it follows two main pathways, or "streams". The ventral stream leads to the temporal lobe, which is involved with object and visual identification and recognition. The dorsal stream leads to the parietal lobe, which is involved with processing the object's spatial location relative to the viewer and with speech repetition.

Visual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision, language, memory, or intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain.[2] There are two types of visual agnosia: apperceptive agnosia and associative agnosia.

<span class="mw-page-title-main">Inferior temporal gyrus</span> One of three gyri of the temporal lobe of the brain

The inferior temporal gyrus is one of three gyri of the temporal lobe and is located below the middle temporal gyrus, connected behind with the inferior occipital gyrus; it also extends around the infero-lateral border on to the inferior surface of the temporal lobe, where it is limited by the inferior sulcus. This region is one of the higher levels of the ventral stream of visual processing, associated with the representation of objects, places, faces, and colors. It may also be involved in face perception, and in the recognition of numbers and words.

<span class="mw-page-title-main">Cerebral achromatopsia</span> Medical condition

Cerebral achromatopsia is a type of color blindness caused by damage to the cerebral cortex of the brain, rather than abnormalities in the cells of the eye's retina. It is often confused with congenital achromatopsia but underlying physiological deficits of the disorders are completely distinct. A similar, but distinct, deficit called color agnosia exists in which a person has intact color perception but has deficits in color recognition, such as knowing which color they are looking at.

<span class="mw-page-title-main">Colour centre</span> Brain region responsible for colour processing

The colour centre is a region in the brain primarily responsible for visual perception and cortical processing of colour signals received by the eye, which ultimately results in colour vision. The colour centre in humans is thought to be located in the ventral occipital lobe as part of the visual system, in addition to other areas responsible for recognizing and processing specific visual stimuli, such as faces, words, and objects. Many functional magnetic resonance imaging (fMRI) studies in both humans and macaque monkeys have shown colour stimuli to activate multiple areas in the brain, including the fusiform gyrus and the lingual gyrus. These areas, as well as others identified as having a role in colour vision processing, are collectively labelled visual area 4 (V4). The exact mechanisms, location, and function of V4 are still being investigated.

In cognitive neuroscience, visual modularity is an organizational concept concerning how vision works. The way in which the primate visual system operates is currently under intense scientific scrutiny. One dominant thesis is that different properties of the visual world require different computational solutions which are implemented in anatomically/functionally distinct regions that operate independently – that is, in a modular fashion.

The Riddoch syndrome is a term coined by Zeki and Ffytche (1998) in a paper published in Brain. The term acknowledges the work of George Riddoch who was the first to describe a condition in which a form of visual impairment, caused by lesions in the occipital lobe, leaves the sufferer blind but able to distinguish visual stimuli with specific characteristics when these appear in the patient's blind field. The most common stimuli that can be perceived consciously are the presence and direction of fast moving objects ; in his work these moving objects were described as "vague and shadowy". Riddoch concluded from his observations that "movement may be recognized as a special visual perception".

<span class="mw-page-title-main">Functional specialization (brain)</span> Neuroscientific theory that different regions of the brain are specialized for different functions

In neuroscience, functional specialization is a theory which suggests that different areas in the brain are specialized for different functions.

Form perception is the recognition of visual elements of objects, specifically those to do with shapes, patterns and previously identified important characteristics. An object is perceived by the retina as a two-dimensional image, but the image can vary for the same object in terms of the context with which it is viewed, the apparent size of the object, the angle from which it is viewed, how illuminated it is, as well as where it resides in the field of vision. Despite the fact that each instance of observing an object leads to a unique retinal response pattern, the visual processing in the brain is capable of recognizing these experiences as analogous, allowing invariant object recognition. Visual processing occurs in a hierarchy with the lowest levels recognizing lines and contours, and slightly higher levels performing tasks such as completing boundaries and recognizing contour combinations. The highest levels integrate the perceived information to recognize an entire object. Essentially object recognition is the ability to assign labels to objects in order to categorize and identify them, thus distinguishing one object from another. During visual processing information is not created, but rather reformatted in a way that draws out the most detailed information of the stimulus.

Biological motion perception is the act of perceiving the fluid unique motion of a biological agent. The phenomenon was first documented by Swedish perceptual psychologist, Gunnar Johansson, in 1973. There are many brain areas involved in this process, some similar to those used to perceive faces. While humans complete this process with ease, from a computational neuroscience perspective there is still much to be learned as to how this complex perceptual problem is solved. One tool which many research studies in this area use is a display stimuli called a point light walker. Point light walkers are coordinated moving dots that simulate biological motion in which each dot represents specific joints of a human performing an action.

Cerebral diplopia or polyopia describes seeing two or more images arranged in ordered rows, columns, or diagonals after fixation on a stimulus. The polyopic images occur monocular bilaterally and binocularly, differentiating it from ocular diplopia or polyopia. The number of duplicated images can range from one to hundreds. Some patients report difficulty in distinguishing the replicated images from the real images, while others report that the false images differ in size, intensity, or color. Cerebral polyopia is sometimes confused with palinopsia, in which multiple images appear while watching an object. However, in cerebral polyopia, the duplicated images are of a stationary object which are perceived even after the object is removed from the visual field. Movement of the original object causes all of the duplicated images to move, or the polyopic images disappear during motion. In palinoptic polyopia, movement causes each polyopic image to leave an image in its wake, creating hundreds of persistent images (entomopia).

Patient DF is a woman with visual apperceptive agnosia who has been studied extensively due to the implications of her behavior for the two streams theory of visual perception. Though her vision remains intact, she has trouble visually locating and identifying objects. Her agnosia is thought to be caused by a bilateral lesion to her lateral occipital cortex, an area thought by dual-stream proponents to be the ventral "object recognition" stream. Despite being unable to identify or recognize objects, DF can still use visual input to guide her action.

The occipital face area (OFA) is a region of the human cerebral cortex which is specialised for face perception. The OFA is located on the lateral surface of the occipital lobe adjacent to the inferior occipital gyrus. The OFA comprises a network of brain regions including the fusiform face area (FFA) and posterior superior temporal sulcus (STS) which support facial processing.

References

  1. Blom, Jan Dirk (2009-12-08). A Dictionary of Hallucinations. Springer Science & Business Media. p. 10. ISBN   978-1-4419-1223-7.
  2. 1 2 3 4 5 6 7 8 Zeki S (April 1991). "Cerebral akinetopsia (visual motion blindness). A review". Brain. 114 ( Pt 2) (2): 811–24. doi:10.1093/brain/114.2.811. PMID   2043951.
  3. Dubner, R.; Zeki, S. M. (1971-12-24). "Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey". Brain Research. 35 (2): 528–532. doi:10.1016/0006-8993(71)90494-X. ISSN   0006-8993. PMID   5002708.
  4. Zeki, S. M. (1974-02-01). "Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey". The Journal of Physiology. 236 (3): 549–573. doi:10.1113/jphysiol.1974.sp010452. PMC   1350849 . PMID   4207129.
  5. "Neuroscience: The man who saw time stand still".
  6. Matyas, Jessica (2020-09-08). Famous Case Histories in Neurotrauma: What neuroscience continues to learn from survivors. Routledge. ISBN   978-1-000-17292-8.
  7. Gersztenkorn D, Lee AG (2015). "Palinopsia revamped: a systematic review of the literature". Surv Ophthalmol. 60 (1): 1–35. doi:10.1016/j.survophthal.2014.06.003. PMID   25113609.
  8. Wurtz RH (September 2008). "Neuronal mechanisms of visual stability". Vision Res. 48 (20): 2070–89. doi:10.1016/j.visres.2008.03.021. PMC   2556215 . PMID   18513781.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 Zihl J, von Cramon D, Mai N (June 1983). "Selective disturbance of movement vision after bilateral brain damage". Brain. 106 (Pt 2) (2): 313–40. doi:10.1093/brain/106.2.313. PMID   6850272.
  10. 1 2 3 4 5 6 7 8 9 Pelak Victoria S.; Hoyt William F. (2005). "Symptoms of akinetopsia associated with traumatic brain injury and Alzheimer's Disease". Neuro-Ophthalmology. 29 (4): 137–142. doi:10.1080/01658100500218046. S2CID   73055970.
  11. Devinsky, Orrin; D'Esposito, Mark (2004). Neurology of Cognitive and Behavioral Disorders. Oxford University Press, USA. p. 136. ISBN   978-0-19-513764-4.
  12. 1 2 3 4 5 Shipp S, de Jong BM, Zihl J, Frackowiak RS, Zeki S (October 1994). "The brain activity related to residual motion vision in a patient with bilateral lesions of V5". Brain. 117 ( Pt 5) (5): 1023–38. doi:10.1093/brain/117.5.1023. PMID   7953586. S2CID   25409218.
  13. 1 2 3 Schenk T, Mai N, Ditterich J, Zihl J (September 2000). "Can a motion-blind patient reach for moving objects?". Eur. J. Neurosci. 12 (9): 3351–60. doi:10.1046/j.1460-9568.2000.00194.x. PMID   10998118. S2CID   45999025.
  14. 1 2 3 Schenk T, Ellison A, Rice N, Milner AD (2005). "The role of V5/MT+ in the control of catching movements: an rTMS study" (PDF). Neuropsychologia. 43 (2): 189–98. doi:10.1016/j.neuropsychologia.2004.11.006. PMID   15707904. S2CID   557636.
  15. 1 2 3 Zihl, J., ULM Munich (Max Planck Institute of Psychiatry), interviewed by R. Hamrick, Oct. 28, 2009.
  16. 1 2 3 4 5 6 Beckers G, Zeki S (February 1995). "The consequences of inactivating areas V1 and V5 on visual motion perception". Brain. 118 ( Pt 1): 49–60. doi:10.1093/brain/118.1.49. PMID   7895014.
  17. Rizzo M, Nawrot M (December 1998). "Perception of movement and shape in Alzheimer's disease". Brain. 121 ( Pt 12) (12): 2259–70. doi: 10.1093/brain/121.12.2259 . PMID   9874479.
  18. Pinel, John P.J. (2011). Biopsychology (8th ed.). Boston: Allyn & Bacon. p. 160. ISBN   978-0-205-83256-9.
  19. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (March 1991). "A direct demonstration of functional specialization in human visual cortex". J. Neurosci. 11 (3): 641–9. doi:10.1523/JNEUROSCI.11-03-00641.1991. PMC   6575357 . PMID   2002358.
  20. Wandell BA, Dumoulin SO, Brewer AA (October 2007). "Visual field maps in human cortex". Neuron. 56 (2): 366–83. doi: 10.1016/j.neuron.2007.10.012 . PMID   17964252.
  21. 1 2 LaRock Eric. "Why neural synchrony fails to explain the unity of visual consciousness". Behavior and Philosophy. 34: 39–58.
  22. Schenk T, Zihl J (September 1997). "Visual motion perception after brain damage: I. Deficits in global motion perception". Neuropsychologia. 35 (9): 1289–97. doi:10.1016/S0028-3932(97)00004-3. PMID   9364498. S2CID   41846314.
  23. Vaina LM, Solomon J, Chowdhury S, Sinha P, Belliveau JW (September 2001). "Functional neuroanatomy of biological motion perception in humans". Proc. Natl. Acad. Sci. U.S.A. 98 (20): 11656–61. Bibcode:2001PNAS...9811656V. doi: 10.1073/pnas.191374198 . PMC   58785 . PMID   11553776.
  24. 1 2 Heutink, Joost; de Haan, Gera; Marsman, Jan-Bernard; van Dijk, Mart; Cordes, Christina (December 2018). "The effect of target speed on perception of visual motion direction in a patient with akinetopsia". Cortex. 119: 511–518. doi: 10.1016/j.cortex.2018.12.002 . PMID   30661737.