Alexandroff extension

Last updated

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X  X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space (but provides an embedding exactly for Tychonoff spaces).

Contents

Example: inverse stereographic projection

A geometrically appealing example of one-point compactification is given by the inverse stereographic projection. Recall that the stereographic projection S gives an explicit homeomorphism from the unit sphere minus the north pole (0,0,1) to the Euclidean plane. The inverse stereographic projection is an open, dense embedding into a compact Hausdorff space obtained by adjoining the additional point . Under the stereographic projection latitudinal circles get mapped to planar circles . It follows that the deleted neighborhood basis of given by the punctured spherical caps corresponds to the complements of closed planar disks . More qualitatively, a neighborhood basis at is furnished by the sets as K ranges through the compact subsets of . This example already contains the key concepts of the general case.

Motivation

Let be an embedding from a topological space X to a compact Hausdorff topological space Y, with dense image and one-point remainder . Then c(X) is open in a compact Hausdorff space so is locally compact Hausdorff, hence its homeomorphic preimage X is also locally compact Hausdorff. Moreover, if X were compact then c(X) would be closed in Y and hence not dense. Thus a space can only admit a Hausdorff one-point compactification if it is locally compact, noncompact and Hausdorff. Moreover, in such a one-point compactification the image of a neighborhood basis for x in X gives a neighborhood basis for c(x) in c(X), and—because a subset of a compact Hausdorff space is compact if and only if it is closed—the open neighborhoods of must be all sets obtained by adjoining to the image under c of a subset of X with compact complement.

The Alexandroff extension

Let be a topological space. Put and topologize by taking as open sets all the open sets in X together with all sets of the form where C is closed and compact in X. Here, denotes the complement of in Note that is an open neighborhood of and thus any open cover of will contain all except a compact subset of implying that is compact ( Kelley 1975 , p. 150).

The space is called the Alexandroff extension of X (Willard, 19A). Sometimes the same name is used for the inclusion map

The properties below follow from the above discussion:

The one-point compactification

In particular, the Alexandroff extension is a Hausdorff compactification of X if and only if X is Hausdorff, noncompact and locally compact. In this case it is called the one-point compactification or Alexandroff compactification of X.

Recall from the above discussion that any Hausdorff compactification with one point remainder is necessarily (isomorphic to) the Alexandroff compactification. In particular, if is a compact Hausdorff space and is a limit point of (i.e. not an isolated point of ), is the Alexandroff compactification of .

Let X be any noncompact Tychonoff space. Under the natural partial ordering on the set of equivalence classes of compactifications, any minimal element is equivalent to the Alexandroff extension (Engelking, Theorem 3.5.12). It follows that a noncompact Tychonoff space admits a minimal compactification if and only if it is locally compact.

Non-Hausdorff one-point compactifications

Let be an arbitrary noncompact topological space. One may want to determine all the compactifications (not necessarily Hausdorff) of obtained by adding a single point, which could also be called one-point compactifications in this context. So one wants to determine all possible ways to give a compact topology such that is dense in it and the subspace topology on induced from is the same as the original topology. The last compatibility condition on the topology automatically implies that is dense in , because is not compact, so it cannot be closed in a compact space. Also, it is a fact that the inclusion map is necessarily an open embedding, that is, must be open in and the topology on must contain every member of . [1] So the topology on is determined by the neighbourhoods of . Any neighborhood of is necessarily the complement in of a closed compact subset of , as previously discussed.

The topologies on that make it a compactification of are as follows:

Further examples

Compactifications of discrete spaces

Compactifications of continuous spaces

As a functor

The Alexandroff extension can be viewed as a functor from the category of topological spaces with proper continuous maps as morphisms to the category whose objects are continuous maps and for which the morphisms from to are pairs of continuous maps such that . In particular, homeomorphic spaces have isomorphic Alexandroff extensions.

See also

Notes

  1. "General topology – Non-Hausdorff one-point compactifications".
  2. 1 2 Joseph J. Rotman, An Introduction to Algebraic Topology (1988) Springer-Verlag ISBN   0-387-96678-1 (See Chapter 11 for proof.)

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, in general topology, compactification is the process or result of making a topological space into a compact space. A compact space is a space in which every open cover of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape".

In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In the mathematical discipline of general topology, Stone–Čech compactification is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX. If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective.

In mathematics, a base (or basis; pl.: bases) for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons are connected; in a totally disconnected space, these are the only connected subsets.

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

<span class="mw-page-title-main">Locally connected space</span> Property of topological spaces

In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting of open connected sets.

In mathematics, there are a few topological spaces named after M. K. Fort, Jr.

In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it. Formally, is dense in if the smallest closed subset of containing is itself.

In general topology, a branch of mathematics, the Appert topology, named for Antoine Appert, is a topology on the set X = {1, 2, 3, ...} of positive integers. In the Appert topology, the open sets are those that do not contain 1, and those that asymptotically contain almost every positive integer. The space X with the Appert topology is called the Appert space.

In mathematics, a polyadic space is a topological space that is the image under a continuous function of a topological power of an Alexandroff one-point compactification of a discrete space.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

References