Analytic function

Last updated

In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions.

Contents

A function is analytic if and only if its Taylor series about converges to the function in some neighborhood for every in its domain. It is important to note that it is a neighborhood and not just at some point , since every differentiable function has at least a tangent line at every point, which is its Taylor series of order 1. So just having a polynomial expansion at singular points is not enough, and the Taylor series must also converge to the function on points adjacent to to be considered an analytic function. As a counterexample see the Weierstrass function or the Fabius function.

Definitions

Formally, a function is real analytic on an open set in the real line if for any one can write

in which the coefficients are real numbers and the series is convergent to for in a neighborhood of .

Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point in its domain

converges to for in a neighborhood of pointwise. [lower-alpha 1] The set of all real analytic functions on a given set is often denoted by .

A function defined on some subset of the real line is said to be real analytic at a point if there is a neighborhood of on which is real analytic.

The definition of a complex analytic function is obtained by replacing, in the definitions above, "real" with "complex" and "real line" with "complex plane". A function is complex analytic if and only if it is holomorphic i.e. it is complex differentiable. For this reason the terms "holomorphic" and "analytic" are often used interchangeably for such functions. [1]

Examples

Typical examples of analytic functions are

Typical examples of functions that are not analytic are

Alternative characterizations

The following conditions are equivalent:

  1. is real analytic on an open set .
  2. There is a complex analytic extension of to an open set which contains .
  3. is smooth and for every compact set there exists a constant such that for every and every non-negative integer the following bound holds [3]

Complex analytic functions are exactly equivalent to holomorphic functions, and are thus much more easily characterized.

For the case of an analytic function with several variables (see below), the real analyticity can be characterized using the Fourier–Bros–Iagolnitzer transform.

In the multivariable case, real analytic functions satisfy a direct generalization of the third characterization. [4] Let be an open set, and let .

Then is real analytic on if and only if and for every compact there exists a constant such that for every multi-index the following bound holds [5]

Properties of analytic functions

A polynomial cannot be zero at too many points unless it is the zero polynomial (more precisely, the number of zeros is at most the degree of the polynomial). A similar but weaker statement holds for analytic functions. If the set of zeros of an analytic function ƒ has an accumulation point inside its domain, then ƒ is zero everywhere on the connected component containing the accumulation point. In other words, if (rn) is a sequence of distinct numbers such that ƒ(rn) = 0 for all n and this sequence converges to a point r in the domain of D, then ƒ is identically zero on the connected component of D containing r. This is known as the identity theorem.

Also, if all the derivatives of an analytic function at a point are zero, the function is constant on the corresponding connected component.

These statements imply that while analytic functions do have more degrees of freedom than polynomials, they are still quite rigid.

Analyticity and differentiability

As noted above, any analytic function (real or complex) is infinitely differentiable (also known as smooth, or ). (Note that this differentiability is in the sense of real variables; compare complex derivatives below.) There exist smooth real functions that are not analytic: see non-analytic smooth function. In fact there are many such functions.

The situation is quite different when one considers complex analytic functions and complex derivatives. It can be proved that any complex function differentiable (in the complex sense) in an open set is analytic. Consequently, in complex analysis, the term analytic function is synonymous with holomorphic function .

Real versus complex analytic functions

Real and complex analytic functions have important differences (one could notice that even from their different relationship with differentiability). Analyticity of complex functions is a more restrictive property, as it has more restrictive necessary conditions and complex analytic functions have more structure than their real-line counterparts. [6]

According to Liouville's theorem, any bounded complex analytic function defined on the whole complex plane is constant. The corresponding statement for real analytic functions, with the complex plane replaced by the real line, is clearly false; this is illustrated by

Also, if a complex analytic function is defined in an open ball around a point x0, its power series expansion at x0 is convergent in the whole open ball (holomorphic functions are analytic). This statement for real analytic functions (with open ball meaning an open interval of the real line rather than an open disk of the complex plane) is not true in general; the function of the example above gives an example for x0 = 0 and a ball of radius exceeding 1, since the power series 1 − x2 + x4x6... diverges for |x|  1.

Any real analytic function on some open set on the real line can be extended to a complex analytic function on some open set of the complex plane. However, not every real analytic function defined on the whole real line can be extended to a complex function defined on the whole complex plane. The function ƒ(x) defined in the paragraph above is a counterexample, as it is not defined for x = ±i. This explains why the Taylor series of ƒ(x) diverges for |x| > 1, i.e., the radius of convergence is 1 because the complexified function has a pole at distance 1 from the evaluation point 0 and no further poles within the open disc of radius 1 around the evaluation point.

Analytic functions of several variables

One can define analytic functions in several variables by means of power series in those variables (see power series). Analytic functions of several variables have some of the same properties as analytic functions of one variable. However, especially for complex analytic functions, new and interesting phenomena show up in 2 or more complex dimensions:

See also

Notes

  1. This implies uniform convergence as well in a (possibly smaller) neighborhood of .
  1. Churchill; Brown; Verhey (1948). Complex Variables and Applications . McGraw-Hill. p.  46. ISBN   0-07-010855-2. A function f of the complex variable z is analytic at point z0 if its derivative exists not only at z but at each point z in some neighborhood of z0. It is analytic in a region R if it is analytic at every point in R. The term holomorphic is also used in the literature do denote analyticity
  2. Strichartz, Robert S. (1994). A guide to distribution theory and Fourier transforms. Boca Raton: CRC Press. ISBN   0-8493-8273-4. OCLC   28890674.
  3. Krantz & Parks 2002, p. 15.
  4. Komatsu, Hikosaburo (1960). "A characterization of real analytic functions". Proceedings of the Japan Academy. 36 (3): 90–93. doi: 10.3792/pja/1195524081 . ISSN   0021-4280.
  5. "Gevrey class - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2020-08-30.
  6. Krantz & Parks 2002.

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Holomorphic function</span> Complex-differentiable (mathematical) function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series. Holomorphic functions are the central objects of study in complex analysis.

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

<span class="mw-page-title-main">Harmonic function</span> Functions in mathematics

In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function where U is an open subset of that satisfies Laplace's equation, that is,

In mathematics, a power series is an infinite series of the form

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Zeros and poles</span> Concept in complex analysis

In complex analysis, a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non-removable singularity of such a function. Technically, a point z0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic in some neighbourhood of z0.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

<span class="mw-page-title-main">Differentiable function</span> Mathematical function whose derivative exists

In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain. A differentiable function is smooth and does not contain any break, angle, or cusp.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

<span class="mw-page-title-main">Morera's theorem</span> Integral criterion for holomorphy

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.

In mathematics, smooth functions and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not true, as demonstrated with the counterexample below.

In mathematics, infinite-dimensional holomorphy is a branch of functional analysis. It is concerned with generalizations of the concept of holomorphic function to functions defined and taking values in complex Banach spaces, typically of infinite dimension. It is one aspect of nonlinear functional analysis.

<span class="mw-page-title-main">Smoothness</span> Number of derivatives of a function (mathematics)

In mathematical analysis, the smoothness of a function is a property measured by the number, called differentiability class, of continuous derivatives it has over its domain.

In mathematics, plurisubharmonic functions form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions plurisubharmonic functions can be defined in full generality on complex analytic spaces.

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D, if f = g on some , where has an accumulation point in D, then f = g on D.

In mathematics and in particular the field of complex analysis, Hurwitz's theorem is a theorem associating the zeroes of a sequence of holomorphic, compact locally uniformly convergent functions with that of their corresponding limit. The theorem is named after Adolf Hurwitz.

References