Androdioecy

Last updated

Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison with the other major reproductive systems: dioecy, gynodioecy and hermaphroditism. [1] In animals, androdioecy has been considered a stepping stone in the transition from dioecy to hermaphroditism, and vice versa. [2]

Contents

Androdioecy, trioecy and gynodioecy are sometimes referred to as a mixed mating systems. [3] Androdioecy is a dimorphic sexual system in plants comparable with gynodioecy and dioecy. [4]

Evolution of androdioecy

The fitness requirements for androdioecy to arise and sustain itself are theoretically so improbable that it was long considered that such systems do not exist. [5] [6] Particularly, males and hermaphrodites have to have the same fitness, in other words produce the same number of offspring, in order to be maintained. However, males only have offspring by fertilizing eggs or ovules of hermaphrodites, while hermaphrodites have offspring both through fertilizing eggs or ovules of other hermaphrodites and their own ovules. This means that all else being equal, males have to fertilize twice as many eggs or ovules as hermaphrodites to make up for the lack of female reproduction. [7] [8]

Androdioecy can evolve either from hermaphroditic ancestors through the invasion of males or from dioecious ancestors through the invasion of hermaphrodites. The ancestral state is important because conditions under which androdioecy can evolve differ significantly.[ citation needed ]

Androdioecy with dioecious ancestry

In roundworms, clam shrimp, tadpole shrimp and cancrid shrimps, androdioecy has evolved from dioecy. In these systems, hermaphrodites can only fertilize their own eggs (self-fertilize) and do not mate with other hermaphrodites. Males are the only means of outcrossing. Hermaphrodites may be beneficial in colonizing new habitats, because a single hermaphrodite can generate many other individuals. [9]

In the well-studied roundworm Caenorhabditis elegans , males are very rare and only occur in populations that are in bad condition or stressed. [10] In Caenorhabditis elegans androdioecy is thought to have evolved from dioecy, through a trioecous intermediate. [11]

Androdioecy with hermaphroditic ancestry

In barnacles, androdioecy evolved from hermaphroditism. [3] Many plants self-fertilize, and males may be sustained in a population when inbreeding depression is severe because males guarantee outcrossing.[ citation needed ]

Types of androdioecy

The most common form of androdioecy in animals involves hermaphrodites that can reproduce by autogamy or allogamy through ovum with males. However, this type does not involve outcrossing with sperm. This type of androdioecy generally occurs in predominantly gonochoric taxonomy groups. [12] :21

One type of androdioecy contains outcrossing hermaphrodites which is present in some angiosperms. [12] :21

Another type of androdioecy has males and simultaneous hermaphrodites in a population due to developmental or conditional sex allocation. Like in some fish species small individuals are hermaphrodites and under circumstances of high density, large individuals become male. [12] :21

Androdioecious species

Despite their unlikely evolution, 115 androdioecious animal and about 50 androdioecious plant species are known. [2] [13] These species include

Anthozoa (Corals)

Nematoda (Roundworms)

Rhabditidae (Order Rhabditida)

Diplogastridae (Order Rhabditida)

Steinernematidae (Order Rhabditida)

Allanotnematidae (Order Rhabditida)

Dorylaimida

Nemertea (Ribbon worms)

Arthropoda

Clam shrimp

Tadpole shrimp

Barnacles

Lysmata

Insects

Annelida (Ringed worms)

Chordata

Angiosperms (Flowering plants)

See also

Related Research Articles

In biology, gonochorism is a sexual system where there are two sexes and each individual organism is either male or female. The term gonochorism is usually applied in animal species, the vast majority of which are gonochoric.

Dioecy is a characteristic of certain species that have distinct unisexual individuals, each producing either male or female gametes, either directly or indirectly. Dioecious reproduction is biparental reproduction. Dioecy has costs, since only the female part of the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

<i>Caenorhabditis</i> Genus of roundworms

Caenorhabditis is a genus of nematodes which live in bacteria-rich environments like compost piles, decaying dead animals and rotting fruit. The name comes from Greek: caeno- ; rhabditis = rod-like.

<span class="mw-page-title-main">Hermaphrodite</span> Sexually reproducing organism that produces both male and female gametes

A hermaphrodite is a sexually reproducing organism that produces both male and female gametes. Animal species in which individuals are of different sexes, either male or female but not both, are gonochoric, which is the opposite of hermaphroditic.

<span class="mw-page-title-main">Gynodioecy</span> Coexistence of female and hermaphrodite within a population

Gynodioecy is a rare breeding system that is found in certain flowering plant species in which female and hermaphroditic plants coexist within a population. Gynodioecy is the evolutionary intermediate between hermaphroditism and dioecy.

<span class="mw-page-title-main">Diplogasteridae</span> Family of roundworms

Diplogastridae, formerly Diplogasteridae, are a family of nematodes (roundworms) known from a wide range of habitats, often in commensal or parasitic associations with insects.

<i>Pristionchus</i> Genus of roundworms

Pristionchus is a genus of nematodes (roundworms) in the family Diplogastridae that currently includes more than 50 described species. They are known mainly as non-parasitic associates of insects, especially beetles, while others have been reported from soil, organic matter, or rotting wood. The genus includes P. pacificus, a satellite model organism to the well-studied nematode Caenorhabditis elegans.

Pristionchus maxplancki is a species of diplogastrid nematodes (roundworms).

Sudhausia is a genus of nematodes (roundworms) of the family Diplogastridae. They live in association with dung beetles and are primarily known from Africa. Species of Sudhausia show a suite of biological features that, together, are unusual for nematodes and animals in general: hermaphrodites, which are females in form, mature to produce offspring before they are adults and thus even capable of mating, and their eggs grow in size during development. Hermaphrodites are also always live-bearing, which is unusual for nematodes under non-stressful conditions. The genus is named in honor of Walter Sudhaus, a German nematologist.

Levipalatum texanum is a free-living nematode (roundworm) in the family Diplogastridae. The species is androdioecious, consisting of self-fertile hermaphrodites which are morphologically females, and males. It is known from the south-eastern United States and has been found to live in association with scarab beetles, although it has also been baited from soil. Nematodes of this species can be cultured on bacterium Escherichia coli in the laboratory, and they are presumed to also feed on microorganisms in the wild. Levipalatum is a monotypic genus.

Caenorhabditis tropicalis is a species of Caenorhabditis nematodes, belonging to the Elegans super-group and Elegans group within the genus. It is a close relative of C. wallacei.C. tropicalis is collected frequently in tropical South America, Caribbean islands, and various islands in the Indian and Pacific Oceans from rotting fruit, flowers and stems. C. tropicalis was referred to as "C. sp. 11" prior to 2014.

Oscheius is a genus of nematode.

Trioecy, tridioecy or subdioecy, is a sexual system characterized by the coexistence of males, females, and hermaphrodites. It has been found in both plants and animals. Trioecy, androdioecy and gynodioecy may be described as mixed mating systems.

<i>Allodiplogaster sudhausi</i> Species of roundworm

Allodiplogaster sudhausi is a free-living nematode species in the Diplogastridae family. It was described in 2008 as Koerneria sudhausi, before being moved to the genus Allodiplogaster in 2014. A. sudhausi is omnivorous. It predates on other nematodes, but can be cultured on Escherichia coli OP50 bacterium on agar.

<span class="mw-page-title-main">Sexual system</span> Distribution of male and female functions across a species.

A sexual system is a distribution of male and female function across organisms in a species. The terms reproductive system and mating system have also been used as synonyms.

Steinernema hermaphroditum is a species of nematodes in the Steinernematidae family.

Bradynema rigidum is a parasitic species of nematode in the Allantonematidae family. The species has been classified as androdioecious. The parasite will live freely in its host; groupings of 2–3 to up to twenty may occur together.

<i>Salvatoria clavata</i> Species of annelid

Salvatoria clavata is a species of Annelida in the family Syllidae.The species is similar to Brania pusilla but is a bit longer measuring in about 2mm to 3mm, individuals in this species can even grow to 10 mm. They have parental care. It has an acrosome shaped like a beaker.

<i>Rhabdias ranae</i> Species of roundworm

Rhabdias ranae is a species of nematode. The species has been described as androdioecious.

References

  1. Pannell, JR. (2002). "The evolution and maintenance of androdioecy". Annual Review of Ecology and Systematics. 33: 397–425. doi:10.1146/annurev.ecolsys.33.010802.150419.
  2. 1 2 Weeks, SC (2012). "The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia". Evolution. 66 (12): 3670–3686. doi:10.1111/j.1558-5646.2012.01714.x. PMID   23206127. S2CID   3198554.
  3. 1 2 Fusco, Giuseppe; Minelli, Alessandro (2019-10-10). The Biology of Reproduction. Cambridge University Press. p. 134. ISBN   978-1-108-49985-9.
  4. Torices, Rubén; Méndez, Marcos; Gómez, José María (2011). "Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms". New Phytologist. 190 (1): 234–248. doi: 10.1111/j.1469-8137.2010.03609.x . ISSN   1469-8137. PMID   21219336.
  5. Charlesworth, D (1984). "Androdioecy and the evolution of dioecy". Biological Journal of the Linnean Society. 22 (4): 333–348. doi:10.1111/j.1095-8312.1984.tb01683.x.
  6. Darwin C. 1877. The different forms of flowers and plants of the same species. New York: Appleton.
  7. Lloyd, DG (1975). "The maintenance of gynodioecy and androdioecy in angiosperms". Genetica. 45 (3): 325–339. doi:10.1007/bf01508307. S2CID   20410507.
  8. Charlesworth, B; Charlesworth, D (1978). "A Model for the Evolution of Dioecy and Gynodioecy". The American Naturalist. 112 (988): 975–997. doi:10.1086/283342. S2CID   83907227.
  9. Pannell, J (2000). "A hypothesis for the evolution of androdioecy: the joint influence of reproductive assurance and local mate competition in a metapopulation". Evolutionary Ecology. 14 (3): 195–211. doi:10.1023/A:1011082827809. S2CID   38050756.
  10. 1 2 Stewart, AD; Phillips, PC (2002). "Selection and maintenance of androdioecy in Caenorhabditis elegans". Genetics. 160 (3): 975–982. doi:10.1093/genetics/160.3.975. PMC   1462032 . PMID   11901115.
  11. Kanzaki, Natsumi; Kiontke, Karin; Tanaka, Ryusei; Hirooka, Yuuri; Schwarz, Anna; Müller-Reichert, Thomas; Chaudhuri, Jyotiska; Pires-daSilva, Andre (2017-09-11). "Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution". Scientific Reports. 7 (1): 11135. Bibcode:2017NatSR...711135K. doi:10.1038/s41598-017-09871-1. ISSN   2045-2322. PMC   5593846 . PMID   28894108.
  12. 1 2 3 Leonard, Janet L. (2019-05-21). Transitions Between Sexual Systems: Understanding the Mechanisms of, and Pathways Between, Dioecy, Hermaphroditism and Other Sexual Systems. Springer. ISBN   978-3-319-94139-4.
  13. Weeks, SC; Benvenuto, C; Reed, SK (2006). "When males and hermaphrodites coexist: a review of androdioecy in animals". Integrative and Comparative Biology. 46 (4): 449–464. doi: 10.1093/icb/icj048 . PMID   21672757.
  14. Fürst von Lieven A (2008). "Koerneria sudhausi n. sp. (Nematoda: Diplogastridae); a hermaphroditic diplogastrid with an egg shell formed by zygote and uterine components". Nematology. 10 (1): 27–45. doi:10.1163/156854108783360087.
  15. Kiontke K, Manegold A, Sudhaus W (2001). "Redescription of Diplogasteroides nasuensis Takaki, 1941 and D. magnus Völk, 1950 (Nematoda: Diplogastrina) associated with Scarabaeidae (Coleoptera)". Nematology. 3 (8): 817–832. doi:10.1163/156854101753625317.
  16. Ragsdale EJ, Kanzaki N, Sommer RJ (2014). "Levipalatum texanum n. gen., n. sp. (Nematoda: Diplogastridae), an androdioecious species from the south-eastern USA". Nematology. 16 (6): 695–709. doi:10.1163/15685411-00002798. S2CID   17802237.
  17. 1 2 Kanzaki N, Ragsdale EJ, Herrmann M, Susoy V, Sommer RJ (2013). "Two androdioecious and one dioecious new species of Pristionchus (Nematoda: Diplogastridae): new reference points for the evolution of reproductive mode". Journal of Nematology. 45 (3): 172–194. PMC   3792836 . PMID   24115783.
  18. Kanzaki N, Ragsdale EJ, Herrmann M, Sommer RJ (2012). "Two new species of Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and La Réunion Island and P. elegans n. sp. from Japan". Journal of Nematology. 44 (1): 80–91. PMC   3593256 . PMID   23483847.
  19. Potts FA (1908). "Sexual phenomena in the free-living nematodes". Proceedings of the Cambridge Philosophical Society. 14: 373–375.
  20. Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M, Sommer RJ (2013). "Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding-structure polymorphism". Zoological Journal of the Linnean Society. 168 (4): 671–698. doi:10.1111/zoj.12041. S2CID   4484091.
  21. 1 2 Hermmann M, Ragsdale EJ, Kanzaki N, Sommer RJ (2013). "Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development". Nematology. 15 (8): 1001–1020. doi:10.1163/15685411-00002738. S2CID   4505014.
  22. Vicky G. Hollenbeck; Stephen C. Weeks; William R. Gould; Naida Zucker (2002). "Maintenance of androdioecy in the freshwater shrimp Eulimnadia texana: sexual encounter rates and outcrossing success". Behavioral Ecology. 13 (4): 561–570. doi:10.1093/beheco/13.4.561.
  23. Zierold, T; Hanfling, B; Gómez, A (2007). "Recent evolution of alternative reproductive modes in the'living fossil'Triops cancriformis". BMC Evolutionary Biology. 7 (1): 161. doi: 10.1186/1471-2148-7-161 . PMC   2075510 . PMID   17854482.
  24. Crisp, DJ (1983). "Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male". Marine Biology Letters. 4: 281–294.
  25. Zardus, JD; Hadfield, MG (2004). "Larval Development and Complemental Males in Chelonibia testudinaria, a Barnacle Commensal with Sea Turtles". Journal of Crustacean Biology. 24 (3): 409–421. doi: 10.1651/c-2476 .
  26. Foster, BA (1983). "Complemental males in the barnacle Bathylasma alearum (cirripedia, pachylasmatidae)". Australian Museum Memoir. 18 (12): 133–140. doi: 10.3853/j.0067-1967.18.1984.379 .
  27. 1 2 3 McLaughlin, PA; Henry, DP (1972). "Comparative Morphology of Complemental Males in Four Species of Balanus (Cirripedia Thoracica)". Crustaceana. 22 (1): 13–30. doi:10.1163/156854072x00642.
  28. Henry, DP; McLaughlin, PA (1967). "A Revision of the Subgenus Solidobalanus Hoek (Cirripedia Thoracica) including a Description of a New Species with Complemental Males". Crustaceana. 12 (1): 43–58. doi:10.1163/156854067x00693.
  29. Yusa, Y; Takemura, M; Miyazaki, K; Watanabe, T; Yamato, S (2010). "Dwarf Males of Octolasmis warwickii (Cirripedia: Thoracica): The First Example of Coexistence of Males and Hermaphrodites in the Suborder Lepadomorpha". The Biological Bulletin. 218 (3): 259–265. doi:10.1086/bblv218n3p259. PMID   20570849. S2CID   23908199.
  30. Mackiewicz; Tatarenkov, A; Taylor, DS; Turner, BJ; Avise, JC; et al. (2006). "Extensive outcrossing and androdioecy in a vertebrate species that otherwise reproduces as a self-fertilizing hermaphrodite". Proc Natl Acad Sci USA. 103 (26): 9924–9928. Bibcode:2006PNAS..103.9924M. doi: 10.1073/pnas.0603847103 . PMC   1502555 . PMID   16785430.
  31. Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioecy in Acer" New Phytologist 165(2):633-640. doi=10.1111/j.1469-8137.2004.01242.x
  32. Sakai, S (2001). "Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest". American Journal of Botany. 88 (9): 1527–1534. doi: 10.2307/3558396 . JSTOR   3558396. PMID   21669685.
  33. Pannell J (1997). "Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae)". Biological Journal of the Linnean Society. 61: 95–116. doi: 10.1111/j.1095-8312.1997.tb01779.x .
  34. Valiente-Banuet, A; Rojas-Martínez, A; Del Coro, Arizmendi M; Dávila, P (1997). "Pollination biology of two columnar Cacti (Neobuxbaumia mezcalaensis and Neobuxbaumia macrocephala) in the Tehuacan Valley, central Mexico". American Journal of Botany. 84 (4): 452–455. doi:10.2307/2446020. JSTOR   2446020.
  35. Thomson JD, Shivanna KR, Kenrick J and Knox RB. 1989" American Journal of Botany 76 (7):1048-1059
  36. Muenchow, G (1998). "Subandrodioecy and male fitness in Sagittaria lancifolia subsp. lancifolia (Alismataceae)". American Journal of Botany. 85 (4): 513–520. doi:10.2307/2446435. JSTOR   2446435. PMID   21684934.
  37. López-Almansa, JC; Pannell, JR; Gil, L (2003). "Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant". American Journal of Botany. 90 (4): 603–609. doi: 10.3732/ajb.90.4.603 . PMID   21659155.