Ant colony

Last updated

Walter R. Tschinkel next to a plaster cast of a Pogonomyrmex badius nest Walter R. Tschinkel and Pogonomyrmex badius nest cast.jpg
Walter R. Tschinkel next to a plaster cast of a Pogonomyrmex badius nest
Ant hill and ant tracks, Oxley Wild Rivers National Park, New South Wales Ant nest.JPG
Ant hill and ant tracks, Oxley Wild Rivers National Park, New South Wales

An ant colony is a population of a single ant species able to maintain its complete lifecycle. Ant colonies are eusocial, communal, and efficiently organized and are very much like those found in other social Hymenoptera, though the various groups of these developed sociality independently through convergent evolution. [1] The typical colony consists of one or more egg-laying queens, numerous sterile females (workers, soldiers) and, seasonally, many winged sexual males and females. [2] In order to establish new colonies, ants undertake flights that occur at species-characteristic times of the day. [3] Swarms of the winged sexuals (known as alates) depart the nest in search of other nests. [4] The males die shortly thereafter, along with most of the females. [5] A small percentage of the females survive to initiate new nests. [6]

Contents

Names

The term "ant colony" refers to a population of workers, reproductive individuals, and brood that live together, cooperate, and treat one another non-aggressively. Often this comprises the genetically related progeny from a single queen, although this is not universal across ants. [6] The name "ant farm" is commonly given to ant nests that are kept in formicaria, isolated from their natural habitat. These formicaria are formed so scientists can study by rearing or temporarily maintaining them. [7] [8] Another name is "formicary", which derives from the Medieval Latin word formīcārium. The word also derives from formica. [9] "Ant nests" are the physical spaces in which the ants live. These can be underground, in trees, under rocks, or even inside a single acorn. [6] The name "ant hill" (or "anthill") applies to aboveground nests where the workers pile sand or soil outside the entrance, forming a large mound. [10]

Colony size

Colony size (the number of individuals that make up the colony) is very important to ants: it can affect how they forage, how they defend their nests, how they mate, and even their physical appearances. Body size is often seen as the most important factor in shaping the natural history[ clarification needed ] of non-colonial organisms; similarly, colony size is key in influencing how colonial organisms are collectively organized. [11] [6] Colonies have a significant range of sizes: some are just several[ clarification needed ] ants living in a twig, while others are super-colonies with many millions of workers. Within a single ant colony, seasonal variation may be huge. For example, in the ant Dolichoderus mariae , one colony can shift from around 300 workers in the summer to over 2,000 workers per queen in the winter. [12] Genetics and environmental factors can cause the variation among different colonies of a single species to be even bigger. Different ant species, even those in the same genus, may have enormous colony size disparities: Formica yessensis has colony sizes that are reported to be 306 million workers while Formica fusca colonies sometimes comprise only 500 workers. [11]

Supercolonies

A supercolony occurs when many ant colonies over a large area unite. They still continue to recognize genetic differences in order to mate, but the different colonies within the super colony avoid aggression. [13] Until 2000, the largest known ant supercolony was on the Ishikari coast of Hokkaidō, Japan. The colony was estimated to contain 306 million worker ants and one million queen ants living in 45,000 nests interconnected by underground passages over an area of 2.7 km2 (670 acres). [14] In 2000, an enormous supercolony of Argentine ants was found in Southern Europe (report published in 2002). Of 33 ant populations tested along the 6,004-kilometre (3,731 mi) stretch along the Mediterranean and Atlantic coasts in Southern Europe, 30 belonged to one supercolony with estimated millions of nests and billions of workers, interspersed with three populations of another supercolony. [15] The researchers claim that this case of unicoloniality cannot be explained by loss of their genetic diversity due to the genetic bottleneck of the imported ants. [15] In 2009, it was demonstrated that the largest Japanese, Californian and European Argentine ant supercolonies were in fact part of a single global "megacolony". [16] This intercontinental megacolony represents the most populous recorded animal society on earth, other than humans.[ citation needed ]

Another supercolony, measuring approximately 100 km (62 mi) wide, was found beneath Melbourne, Australia in 2004. [17]

Organizational terminology

The following terminology is commonly used among myrmecologists to describe the behaviors demonstrated by ants when founding and organizing colonies: [6] :p. 209

Monogyny
Establishment of an ant colony under a single egg-laying queen.
Polygyny
Establishment of an ant colony under multiple egg-laying queens.
Oligogyny
Establishment of a polygynous colony where the multiple egg-laying queens remain far apart from one another in the nest.
Haplometrosis
Establishment of a colony by a single queen.
Pleometrosis
Establishment of a colony by multiple queens.
Monodomy
Establishment of a colony at a single nest site.
Polydomy
Establishment of a colony across multiple nest sites.

Colony structure

Ant colonies have a complex social structure. Ants’ jobs are determined and can be changed by age. As ants grow older their jobs move them farther from the queen, or center of the colony. Younger ants work within the nest protecting the queen and young. Sometimes, a queen is not present and is replaced by egg-laying workers. These worker ants can only lay haploid eggs producing sterile offspring. [18] Despite the title of queen, she doesn't delegate the tasks to the worker ants; however, the ants choose their tasks based on individual preference. [2] Ants as a colony also work as a collective "super mind". Ants can compare areas and solve complex problems by using information gained by each member of the colony to find the best nesting site or to find food. [2] Some social-parasitic species of ants, known as the slave-making ant, raid and steal larvae from neighboring colonies. [19]

Excavation

Ant hill art is a growing collecting hobby. It involves pouring molten metal (typically non-toxic zinc or aluminum), plaster or cement down an ant colony mound acting as a mold and upon hardening, one excavates the resulting structure. [20] In some cases, this involves a great deal of digging. [21] The casts are often used for research and education purposes but many are simply given or sold to natural history museums or sold as folk art or as souvenirs. Usually, the hills are chosen after the ants have abandoned so as to not kill any ants; however in the Southeast United States, pouring into an active colony of invasive fire ants is a novel way to eliminate them.[ citation needed ]

Ant-beds

Nest construction of ants

An ant-bed, in its simplest form, is a pile of soil, sand, pine needles, manure, urine, or clay or a composite of these and other materials that build up at the entrances of the subterranean dwellings of ant colonies as they are excavated. [22] A colony is built and maintained by legions of worker ants, who carry tiny bits of dirt and pebbles in their mandibles and deposit them near the exit of the colony. [23] They normally deposit the dirt or vegetation at the top of the hill to prevent it from sliding back into the colony, but in some species, they actively sculpt the materials into specific shapes and may create nest chambers within the mound.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Ant</span> Family of insects

Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from vespoid wasp ancestors in the Cretaceous period. More than 13,800 of an estimated total of 22,000 species have been classified. They are easily identified by their geniculate (elbowed) antennae and the distinctive node-like structure that forms their slender waists.

<i>Formica exsecta</i> Species of ant

Formica exsecta is a species of ant found from Western Europe to Asia.

<i>Formica</i> Genus of ants

Formica is a genus of ants of the family Formicidae, including species commonly known as wood ants, mound ants, thatching ants, and field ants. Formica is the type genus of the Formicidae, and of the subfamily Formicinae. The type species of genus Formica is the European red wood ant Formica rufa. Ants of this genus tend to be between 4 and 8 mm long. Ants belonging to the Formica genus possess a single knob or bump located between their thorax and abdomen. These ants primarily feed on honeydew, a sugary liquid produced by aphids. Formica ants appear to take on a shepherding role with smaller aphids, relocating them to different parts of plants to ensure a continuous food source for the aphids. By doing so, the ants can establish a relatively sustainable honeydew supply for both themselves and their colony.

<i>Formica rufa</i> species group Group of ants

The Formica rufa group is a subgeneric group within the genus Formica, first proposed by William Morton Wheeler. This group contains the mound-building species of Formica commonly termed "wood ants" or "thatch-mound ants", which build prominent nests consisting of a mound of grass, litter, or conifer needles. The species Formica rufa or the red wood ant is the type species of this subgroup.

<i>Formica rufa</i> Species of ant

Formica rufa, also known as the red wood ant, southern wood ant, or horse ant, is a boreal member of the Formica rufa group of ants, and is the type species for that group, being described already by Linnaeus. It is native to Eurasia, with a recorded distribution stretching from the middle of Scandinavia to the northern Iberia and Anatolia, and from Great Britain to Lake Baikal, with unconfirmed reportings of it also to the Russian Far East. There are claims that it can be found in North America, but this is not confirmed in specialised literature, and no recent publication where North American wood ants are listed mentions it as present, while records from North America are all listed as dubious or unconfirmed in a record compilation. Workers' head and thorax are colored red and the abdomen brownish-black, usually with a dorsal dark patches on the head and promensonotum, although some individuals may be more uniform reddish and even have some red on the part of the gastern facing the body. In order to separate them from closely related species, specimens needs to be inspected under magnification, where difference in hairyness are among the telling characteristics, with Formica rufa being more hairy than per example Formica polyctena but less hairy than Formica lugubris. Workers are polymorphic, measuring 4.5–9 mm in length. They have large mandibles, and like many other ant species, they are able to spray formic acid from their abdomens as a defence. Formic acid was first extracted in 1671 by the English naturalist John Ray by distilling a large number of crushed ants of this species. Adult wood ants primarily feed on honeydew from aphids. Some groups form large networks of connected nests with multiple queen colonies, while others have single-queen colonies.

<i>Dorylus</i> Driver ants (genus of insects)

Dorylus, also known as driver ants, safari ants, or siafu, is a large genus of army ants found primarily in central and east Africa, although the range also extends to southern Africa and tropical Asia. The term siafu is a loanword from Swahili, and is one of numerous similar words from regional Bantu languages used by indigenous peoples to describe various species of these ants. Unlike the New World members of the former subfamily Ecitoninae, members of this genus form temporary subterranean bivouacs in underground cavities which they excavate and inhabit - either for a few days or up to three months. Also unlike some New World army ants, driver ants are not specialized predators of other species of ant, instead being more generalistic with a diet consisting of a diversity of arthropods. Colonies are enormous compared to other army ants and can contain over 20 million individuals. As with their American counterparts, workers exhibit caste polymorphism with the soldiers having particularly large heads that power their scissor-like mandibles. They are capable of stinging, but very rarely do so, relying instead on their powerful shearing jaws. Driver ant queens are the largest living ants known, with the largest measuring between 40 - 63 millimeters in total body length depending on their physiological condition.

<span class="mw-page-title-main">Pharaoh ant</span> Species of ant

The pharaoh ant is a small (2 mm) yellow or light brown, almost transparent ant notorious for being a major indoor nuisance pest, especially in hospitals. A cryptogenic species, it has now been introduced to virtually every area of the world, including Europe, the Americas, Australasia and Southeast Asia. It is a major pest in the United States, Australia, and Europe. The ant's common name is said to be derived from the mistaken belief that it was one of the biblical Egyptian (pharaonic) plagues.

<span class="mw-page-title-main">Army ant</span> Name used for several ant species

The name army ant (or legionary ant or marabunta) is applied to over 200 ant species in different lineages. Because of their aggressive predatory foraging groups, known as "raids", a huge number of ants forage simultaneously over a limited area.

<i>Apis florea</i> Species of bee

The dwarf honey bee, Apis florea, is one of two species of small, wild honey bees of southern and southeastern Asia. It has a much wider distribution than its sister species, Apis andreniformis. First identified in the late 18th century, Apis florea is unique for its morphology, foraging behavior and defensive mechanisms like making a piping noise. Apis florea have open nests and small colonies, which makes them more susceptible to predation than cavity nesters with large numbers of defensive workers. These honey bees are important pollinators and therefore commodified in countries like Cambodia.

<i>Harpegnathos saltator</i> Species of ant

Harpegnathos saltator, sometimes called the Indian jumping ant or Jerdon's jumping ant, is a species of ant found in India. They have long mandibles and have the ability to leap a few inches. They are large-eyed and active predators that hunt mainly in the early morning. The colonies are small and the difference between workers and queens is very slight.

<span class="mw-page-title-main">Meat ant</span> Common Australian ant

The meat ant, also known as the gravel ant or southern meat ant, is a species of ant endemic to Australia. A member of the genus Iridomyrmex in the subfamily Dolichoderinae, it was described by British entomologist Frederick Smith in 1858. The meat ant is associated with many common names due to its appearance, nest-building behaviour and abundance, of which its specific name, purpureus, refers to its coloured appearance. It is among the best-known species of ant found throughout Australia; it occurs in almost all states and territories except for Tasmania. Its enormous distribution, aggression and ecological importance have made this ant a dominant species.

<span class="mw-page-title-main">Nuptial flight</span> Mating flight of eusocial insects

Nuptial flight is an important phase in the reproduction of most ant, termite, and some bee species. It is also observed in some fly species, such as Rhamphomyia longicauda.

<i>Formica polyctena</i> Species of ant

Formica polyctena is a species of European red wood ant in the genus Formica and large family Formicidae. The species was first described by Arnold Förster in 1850. The latin species name polyctena is from Greek and literally means 'many cattle', referring to the species' habit of farming aphids for honeydew food. It is found in many European countries. It is a eusocial species, that has a distinct caste system of sterile workers and a very small reproductive caste. The ants have a genetic based cue that allow them to identify which other ants are members of their nest and which are foreign individuals. When facing these types of foreign invaders the F. polyctena has a system to activate an alarm. It can release pheromones which can trigger an alarm response in other nearby ants.

<span class="mw-page-title-main">Eusociality</span> Highest level of animal sociality a species can attain

Eusociality is the highest level of organization of sociality. It is defined by the following characteristics: cooperative brood care, overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society which are sometimes referred to as 'castes'. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform behaviors characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.

<span class="mw-page-title-main">Argentine ant</span> Species of ant

The Argentine ant is an ant native to northern Argentina, Uruguay, Paraguay, Bolivia and southern Brazil. This invasive species was inadvertently introduced by humans on a global scale and has become established in many Mediterranean climate areas, including South Africa, New Zealand, Japan, Easter Island, Australia, the Azores, Europe, Hawaii, and the continental United States. Argentine ants are significant pests within agricultural and urban settings, and are documented to cause substantial harm to communities of native arthropods, vertebrates, and plants within their invaded range.

<i>Pheidole megacephala</i> Species of ant

Pheidole megacephala is a species of ant in the family Formicidae. It is commonly known as the big-headed ant in the US and the coastal brown ant in Australia. It is a very successful invasive species and is considered a danger to native ants in Australia and other places. It is regarded as one of the world's worst invasive ant species.

<span class="mw-page-title-main">Worker policing</span> Insects destroying eggs not laid by queen

Worker policing is a behavior seen in colonies of social hymenopterans whereby worker females eat or remove eggs that have been laid by other workers rather than those laid by a queen. Worker policing ensures that the offspring of the queen will predominate in the group. In certain species of bees, ants and wasps, workers or the queen may also act aggressively towards fertile workers. Worker policing has been suggested as a form of coercion to promote the evolution of altruistic behavior in eusocial insect societies.

<i>Formica truncorum</i> Species of ant

Formica truncorum is a species of wood ant from the genus Formica. It is distributed across a variety of locations worldwide, including central Europe and Japan. Workers can range from 3.5 to 9.0mm and are uniquely characterized by small hairs covering their entire bodies. Like all other ants, F. truncorum is eusocial and demonstrates many cooperative behaviors that are unique to its order. Colonies are either monogynous, with one queen, or polygynous, with many queens, and these two types of colonies differ in many characteristics.

Protopolybia exigua is a species of vespid wasp found in South America and Southern Brazil. These neotropical wasps, of the tribe Epiponini, form large colonies with multiple queens per colony. P. exigua are small wasps that find nourishment from nectar and prey on arthropods. Their nests are disc-shaped and hang from the undersides of leaves and tree branches. This particular species of wasp can be hard to study because they frequently abandon their nests. P. exigua continuously seek refuge from phorid fly attacks and thus often flee infested nests to build new ones. The wasps' most common predators are ants and the parasitoid phorid flies from the Phoridae family.

<span class="mw-page-title-main">Ant supercolony</span> Exceptionally large ant colony

An ant supercolony is an exceptionally large ant colony, consisting of a high number of spatially separated but socially connected nests of a single ant species, spread over a large area without territorial borders. Supercolonies are typically polygynous, containing many egg-laying females. Workers and queens from different nests within the same supercolony can freely move among the nests, and all workers cooperate indiscriminately with each other in collecting food and care of the brood, and show no apparent mutual aggressive behavior.

References

  1. Proceedings of the Royal Society of London. Series B: Biological Sciences (1999). "Convergent evolution, superefficient teams and tempo in Old and New World army ants". Proceedings of the Royal Society of London. Series B: Biological Sciences. 266 (1429). Royal Society Publishing: 1697–1701. doi:10.1098/rspb.1999.0834. PMC   1690180 .
  2. 1 2 3 "Ant Colony – ASU – Ask A Biologist". askabiologist.asu.edu. 16 April 2010.
  3. "Seasonal and nocturnal periodicities in ant nuptial flights in the Tropics (Hymenoptera: Formicidae)". ResearchGate. Retrieved 12 October 2017.
  4. Wilson, E. O. (1957). "The Organization of a Nuptial Flight of the Ant Pheidole Sttarches Wheeler". Psyche: A Journal of Entomology. 64 (2): 46–50. doi: 10.1155/1957/68319 . ISSN   0033-2615.
  5. Loiácono, Marta; Margaría, Cecilia. "Hymenoptera (Sawflies, Ants, Bees, and Wasps)". Grzimek's Animal Life Encyclopedia. 3 (2): 405–425. Retrieved 8 December 2018.
  6. 1 2 3 4 5 Holldobler, Bert; Wilson, Edward O. (1990). The Ants. Harvard University Press. ISBN   0-674-04075-9.
  7. "Word Mark: ANT FARM (renewal)". United States Patent and Trademark Office. 8 January 2009. Retrieved 18 January 2014.
  8. Kennedy, C.H. (1951). "Myrmecological technique. IV. Collecting ants by rearing pupae". The Ohio Journal of Science. 51 (1): 17–20. hdl:1811/3802.
  9. "Formicary". Merriam-Webster Online Dictionary. Retrieved 19 March 2015.
  10. Claybourne, A. (2013). A Colony of Ants: and Other Insect Groups. Oxford, UK: Raintree Publishers. p. 12. ISBN   978-1-4062-5563-8.
  11. 1 2 Burchill, A. T.; Moreau, C. S. (5 February 2016). "Colony size evolution in ants: macroevolutionary trends". Insectes Sociaux. 63 (2): 291–298. doi:10.1007/s00040-016-0465-3. S2CID   4817407.
  12. Laskis, Kristina O.; Tschinkel, Walter R. (February 2009). "The Seasonal Natural History of the Ant, Dolichoderus mariae, in Northern Florida". Journal of Insect Science. 9 (2): 2. doi:10.1673/031.009.0201. PMC   3011848 . PMID   19611227.
  13. Steiner, Florian M.; Schlick-Steiner, Birgit C.; Moder, Karl; Stauffer, Christian; Arthofer, Wolfgang; Buschinger, Alfred; Espadaler, Xavier; Christian, Erhard; Einfinger, Katrin (2007). "Abandoning Aggression but Maintaining Self-Nonself Discrimination as a First Stage in Ant Supercolony Formation". Current Biology. 17 (21): 1903–1907. Bibcode:2007CBio...17.1903S. doi: 10.1016/j.cub.2007.09.061 . PMID   17964165.
  14. Higashi, S. and K. Yamauchi. "Influence of a Supercolonial Ant Formica (Formica) yessensis Forel on the Distribution of Other Ants in Ishikari Coast". Japanese Journal of Ecology, No. 29, 257–64, 1979.
  15. 1 2 Tatiana Giraud, Jes S. Pedersen, and Laurent Kelle. Evolution of supercolonies: The Argentine ants of southern Europe . The National Academy of Sciences, 2002.
  16. Ant mega-colony takes over world BBC Wednesday, 1 July 2009 10:41 GMT .
  17. Super ant colony hits Australia . BBC News, 2004.
  18. Peeters, Christian (1 October 1991). "The occurrence of sexual reproduction among ant workers". Biological Journal of the Linnean Society. 44 (2): 141–152. doi:10.1111/j.1095-8312.1991.tb00612.x. ISSN   0024-4066.
  19. Foitzik, S.; DeHeer, C. J.; Hunjan, D. N.; Herbers, J. M. (7 June 2001). "Coevolution in host-parasite systems: Behavioural strategies of slave-making ants and their hosts". Proceedings of the Royal Society B: Biological Sciences. 268 (1472): 1139–1146. doi:10.1098/rspb.2001.1627. ISSN   0962-8452. PMC   1088719 . PMID   11375101.
  20. Anthill Art (12 March 2015). "Largest Aluminum Fire Ant Colony Cast So Far (Cast #072)". Archived from the original on 22 December 2021 via YouTube.
  21. KYLYKaHYT (24 December 2010). "Giant Ant Hill Excavated". Archived from the original on 22 December 2021 via YouTube.
  22. McCook, Henry C. (1877). "Mound-Making Ants of the Alleghenies, Their Architecture and Habits". Transactions of the American Entomological Society. 6: 253–296. doi:10.2307/25076323. hdl: 2027/hvd.32044072277692 . JSTOR   25076323.
  23. Gordon, Deborah M. (January–February 1995). "The Development of Organization in an Ant Colony". American Scientist. 83 (1): 50–57. Bibcode:1995AmSci..83...50G. JSTOR   29775362.