Approximation property

Last updated
The construction of a Banach space without the approximation property earned Per Enflo a live goose in 1972, which had been promised by Stanislaw Mazur (left) in 1936. MazurGes.jpg
The construction of a Banach space without the approximation property earned Per Enflo a live goose in 1972, which had been promised by Stanisław Mazur (left) in 1936.

In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators. The converse is always true.

Contents

Every Hilbert space has this property. There are, however, Banach spaces which do not; Per Enflo published the first counterexample in a 1973 article. However, much work in this area was done by Grothendieck (1955).

Later many other counterexamples were found. The space of bounded operators on an infinite-dimensional Hilbert space does not have the approximation property. [2] The spaces for and (see Sequence space) have closed subspaces that do not have the approximation property.

Definition

A locally convex topological vector space X is said to have the approximation property, if the identity map can be approximated, uniformly on precompact sets, by continuous linear maps of finite rank. [3]

For a locally convex space X, the following are equivalent: [3]

  1. X has the approximation property;
  2. the closure of in contains the identity map ;
  3. is dense in ;
  4. for every locally convex space Y, is dense in ;
  5. for every locally convex space Y, is dense in ;

where denotes the space of continuous linear operators from X to Y endowed with the topology of uniform convergence on pre-compact subsets of X.

If X is a Banach space this requirement becomes that for every compact set and every , there is an operator of finite rank so that , for every .

Some other flavours of the AP are studied:

Let be a Banach space and let . We say that X has the -approximation property (-AP), if, for every compact set and every , there is an operator of finite rank so that , for every , and .

A Banach space is said to have bounded approximation property (BAP), if it has the -AP for some .

A Banach space is said to have metric approximation property (MAP), if it is 1-AP.

A Banach space is said to have compact approximation property (CAP), if in the definition of AP an operator of finite rank is replaced with a compact operator.

Examples

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.

<span class="mw-page-title-main">Invariant subspace problem</span> Partially unsolved problem in mathematics

In the field of mathematics known as functional analysis, the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends some non-trivial closed subspace to itself. Many variants of the problem have been solved, by restricting the class of bounded operators considered or by specifying a particular class of Banach spaces. The problem is still open for separable Hilbert spaces.

In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field K of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in K, and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

In mathematics, a Schauder basis or countable basis is similar to the usual (Hamel) basis of a vector space; the difference is that Hamel bases use linear combinations that are finite sums, while for Schauder bases they may be infinite sums. This makes Schauder bases more suitable for the analysis of infinite-dimensional topological vector spaces including Banach spaces.

In functional analysis, compact operators are linear operators on Banach spaces that map bounded sets to relatively compact sets. In the case of a Hilbert space H, the compact operators are the closure of the finite rank operators in the uniform operator topology. In general, operators on infinite-dimensional spaces feature properties that do not appear in the finite-dimensional case, i.e. for matrices. The compact operators are notable in that they share as much similarity with matrices as one can expect from a general operator. In particular, the spectral properties of compact operators resemble those of square matrices.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

<span class="mw-page-title-main">Per Enflo</span> Swedish mathematician and concert pianist

Per H. Enflo is a Swedish mathematician working primarily in functional analysis, a field in which he solved problems that had been considered fundamental. Three of these problems had been open for more than forty years:

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

In mathematics, a symmetrizable compact operator is a compact operator on a Hilbert space that can be composed with a positive operator with trivial kernel to produce a self-adjoint operator. Such operators arose naturally in the work on integral operators of Hilbert, Korn, Lichtenstein and Marty required to solve elliptic boundary value problems on bounded domains in Euclidean space. Between the late 1940s and early 1960s the techniques, previously developed as part of classical potential theory, were abstracted within operator theory by various mathematicians, including M. G. Krein, William T. Reid, Peter Lax and Jean Dieudonné. Fredholm theory already implies that any element of the spectrum is an eigenvalue. The main results assert that the spectral theory of these operators is similar to that of compact self-adjoint operators: any spectral value is real; they form a sequence tending to zero; any generalized eigenvector is an eigenvector; and the eigenvectors span a dense subspace of the Hilbert space.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector spaces (TVSs).

An integral bilinear form is a bilinear functional that belongs to the continuous dual space of , the injective tensor product of the locally convex topological vector spaces (TVSs) X and Y. An integral linear operator is a continuous linear operator that arises in a canonical way from an integral bilinear form.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Megginson, Robert E. An Introduction to Banach Space Theory p. 336
  2. Szankowski, A.: B(H) does not have the approximation property. Acta Math. 147, 89-108(1981).
  3. 1 2 3 4 5 Schaefer & Wolff 1999, p. 108-115.

Bibliography