Argument principle

Last updated
The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have
1
2
p
i
[?]
C
f
'
(
z
)
f
(
z
)
d
z
=
4
-
5.
{\displaystyle {\frac {1}{2\pi i}}\oint _{C}{f'(z) \over f(z)}\,dz=4-5.\,} Argument principle1.svg
The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have

In complex analysis, the argument principle (or Cauchy's argument principle) relates the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative.

Contents

Specifically, if f(z) is a meromorphic function inside and on some closed contour C, and f has no zeros or poles on C, then

where Z and P denote respectively the number of zeros and poles of f(z) inside the contour C, with each zero and pole counted as many times as its multiplicity and order, respectively, indicate. This statement of the theorem assumes that the contour C is simple, that is, without self-intersections, and that it is oriented counter-clockwise.

More generally, suppose that f(z) is a meromorphic function on an open set Ω in the complex plane and that C is a closed curve in Ω which avoids all zeros and poles of f and is contractible to a point inside Ω. For each point z ∈ Ω, let n(C,z) be the winding number of C around z. Then

where the first summation is over all zeros a of f counted with their multiplicities, and the second summation is over the poles b of f counted with their orders.

Interpretation of the contour integral

The contour integral can be interpreted as 2πi times the winding number of the path f(C) around the origin, using the substitution w = f(z):

That is, it is i times the total change in the argument of f(z) as z travels around C, explaining the name of the theorem; this follows from

and the relation between arguments and logarithms.

Proof of the argument principle

Let zZ be a zero of f. We can write f(z) = (z  zZ)kg(z) where k is the multiplicity of the zero, and thus g(zZ) ≠ 0. We get

and

Since g(zZ) ≠ 0, it follows that g' (z)/g(z) has no singularities at zZ, and thus is analytic at zZ, which implies that the residue of f(z)/f(z) at zZ is k.

Let zP be a pole of f. We can write f(z) = (z  zP)mh(z) where m is the order of the pole, and h(zP) ≠ 0. Then,

and

similarly as above. It follows that h(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We find that the residue of f(z)/f(z) at zP is m.

Putting these together, each zero zZ of multiplicity k of f creates a simple pole for f(z)/f(z) with the residue being k, and each pole zP of order m of f creates a simple pole for f(z)/f(z) with the residue being m. (Here, by a simple pole we mean a pole of order one.) In addition, it can be shown that f(z)/f(z) has no other poles, and so no other residues.

By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together, the sum of the k's for each zero zZ is the number of zeros counting multiplicities of the zeros, and likewise for the poles, and so we have our result.

Applications and consequences

The argument principle can be used to efficiently locate zeros or poles of meromorphic functions on a computer. Even with rounding errors, the expression will yield results close to an integer; by determining these integers for different contours C one can obtain information about the location of the zeros and poles. Numerical tests of the Riemann hypothesis use this technique to get an upper bound for the number of zeros of Riemann's function inside a rectangle intersecting the critical line. The argument principle can also be used to prove Rouché's theorem, which can be used to bound the roots of polynomial roots.

A consequence of the more general formulation of the argument principle is that, under the same hypothesis, if g is an analytic function in Ω, then

For example, if f is a polynomial having zeros z1, ..., zp inside a simple contour C, and g(z) = zk, then

is power sum symmetric polynomial of the roots of f.

Another consequence is if we compute the complex integral:

for an appropriate choice of g and f we have the Abel–Plana formula:

which expresses the relationship between a discrete sum and its integral.

The argument principle is also applied in control theory. In modern books on feedback control theory, it is commonly used as the theoretical foundation for the Nyquist stability criterion. Moreover, a more generalized form of the argument principle can be employed to derive Bode's sensitivity integral and other related integral relationships. [1]

Generalized argument principle

There is an immediate generalization of the argument principle. Suppose that g is analytic in the region . Then

where the first summation is again over all zeros a of f counted with their multiplicities, and the second summation is again over the poles b of f counted with their orders.

History

According to the book by Frank Smithies (Cauchy and the Creation of Complex Function Theory, Cambridge University Press, 1997, p. 177), Augustin-Louis Cauchy presented a theorem similar to the above on 27 November 1831, during his self-imposed exile in Turin (then capital of the Kingdom of Piedmont-Sardinia) away from France. However, according to this book, only zeroes were mentioned, not poles. This theorem by Cauchy was only published many years later in 1874 in a hand-written form and so is quite difficult to read. Cauchy published a paper with a discussion on both zeroes and poles in 1855, two years before his death.

See also

Related Research Articles

<span class="mw-page-title-main">Holomorphic function</span> Complex-differentiable (mathematical) function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.

<span class="mw-page-title-main">Cauchy's integral theorem</span> Theorem in complex analysis

In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.

<span class="mw-page-title-main">Laurent series</span> Power series with negative powers

In mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

<span class="mw-page-title-main">Residue (complex analysis)</span> Attribute of a mathematical function

In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. Residues can be computed quite easily and, once known, allow the determination of general contour integrals via the residue theorem.

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

<span class="mw-page-title-main">Winding number</span> Number of times a curve wraps around a point in the plane

In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be non-integer. The winding number depends on the orientation of the curve, and it is negative if the curve travels around the point clockwise.

<span class="mw-page-title-main">Green's theorem</span> Theorem in calculus relating line and double integrals

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In complex analysis, Liouville's theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function for which there exists a positive number such that for all is constant. Equivalently, non-constant holomorphic functions on have unbounded images.

<span class="mw-page-title-main">Morera's theorem</span> Integral criterion for holomorphy

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.

<span class="mw-page-title-main">Contour integration</span> Method of evaluating certain integrals along paths in the complex plane

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

<span class="mw-page-title-main">Rouché's theorem</span> Theorem about zeros of holomorphic functions

Rouché's theorem, named after Eugène Rouché, states that for any two complex-valued functions f and g holomorphic inside some region with closed contour , if |g(z)| < |f(z)| on , then f and f + g have the same number of zeros inside , where each zero is counted as many times as its multiplicity. This theorem assumes that the contour is simple, that is, without self-intersections. Rouché's theorem is an easy consequence of a stronger symmetric Rouché's theorem described below.

<span class="mw-page-title-main">Nyquist stability criterion</span> Graphical method of determining the stability of a dynamical system

In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker at Siemens in 1930 and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, is a graphical technique for determining the stability of a dynamical system.

In mathematics, the Borel–Carathéodory theorem in complex analysis shows that an analytic function may be bounded by its real part. It is an application of the maximum modulus principle. It is named for Émile Borel and Constantin Carathéodory.

In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.

In mathematics, the Nørlund–Rice integral, sometimes called Rice's method, relates the nth forward difference of a function to a line integral on the complex plane. It commonly appears in the theory of finite differences and has also been applied in computer science and graph theory to estimate binary tree lengths. It is named in honour of Niels Erik Nørlund and Stephen O. Rice. Nørlund's contribution was to define the integral; Rice's contribution was to demonstrate its utility by applying saddle-point techniques to its evaluation.

In complex analysis, Jordan's lemma is a result frequently used in conjunction with the residue theorem to evaluate contour integrals and improper integrals. The lemma is named after the French mathematician Camille Jordan.

<span class="mw-page-title-main">Line integral</span> Definite integral of a scalar or vector field along a path

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane.

In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If is a random variate in the interval with probability density function (PDF) , then is a circular variable distributed according to the wrapped distribution and is an angular variable in the interval distributed according to the wrapped distribution .

In thermal quantum field theory, the Matsubara frequency summation is the summation over discrete imaginary frequencies. It takes the following form

References

  1. Xu, Yong; Chen, Gang; Chen, Jie; Qiu, Li (2023). "Argument Principle and Integral Relations: Hidden Links and Generalized Forms". IEEE Transactions on Automatic Control. 68 (3): 1831–1838. doi:10.1109/TAC.2022.3159565. ISSN   0018-9286.