Articulatory suppression

Last updated

Articulatory suppression is the process of inhibiting memory performance by speaking while being presented with an item to remember. Most research demonstrates articulatory suppression by requiring an individual to repeatedly say an irrelevant speech sound out loud while being presented with a list of words to recall shortly after. The individual experiences four stages when repeating the irrelevant sound: the intention to speak, programming the speech, articulating the sound or word, and receiving auditory feedback. [1]

Contents

Phonological loop and visuospatial sketchpad

When studying articulatory suppression, many researchers examine the phonological loop and the visuospatial sketchpad as well. The phonological loop is the process of hearing information, which has direct access to one's phonological store (i.e. one's short-term memory). The visuospatial sketchpad is information that is seen (visual information), which only has access to the phonological store through one's articulatory control process (i.e. when visual information can be phonologically encoded). Essentially, articulatory suppression is related to these two topics because it is what prevents visual information from being encoded into the phonological store. [2]

A study done by Franssen, Vandierendonck and Van Hiel [3] which addressed the question, to what extent is phonological working memory involved in time estimation processes. Their study used irrelevant speech and articulatory suppression to test whether time estimation is affected during a task condition or phonological load. The results showed that articulatory suppression had impaired time estimation. The results from this study tell us the effects of articulatory suppression and its involvement in the phonological loop.

Irrelevant speech

Much research has been done to assess the relationship between articulatory suppression and irrelevant speech. One within-groups research study in particular examined whether articulatory suppression has an effect on the ability to encode information into memory and the relationship that articulatory suppression has with the irrelevant speech effect. [4] Irrelevant speech, in this experiment, consisted of words being played on a speaker during the study. Participants were shown seven letters in a row and then asked to repeat the order of the letters by pushing buttons on a screen. There were two phases to this study, and in Phase I, the participants were either asked to remain quiet while the letters were shown or to repeat "123" while the letters were shown. In Phase II, the irrelevant speech was either absent or played on the speakers.

Results of this study concluded that memory performance was disrupted by both articulatory suppression and irrelevant speech, although the effect of articulatory suppression was larger. This is because they inhibit or eliminate the individual's ability to rely on the auditory cues that help encode information into memory. Another reason articulatory suppression inhibits memory performance more than irrelevant speech is because it prevents information from being represented in the mind and is unable to be rehearsed. In both phases, an overwhelming majority of participants did the best when the information was encoded in the quiet trial. This information could be helpful to everyone because it lends evidence to the statement that a quiet environment is the best environment for people to learn or commit any sort of information to memory.

An additional study sought to determine what types of articulatory suppression reduce the strength of encoding items into an individual's memory. Researchers manipulated participants by engaging them in multiple kinds of articulatory suppression (i.e. some were rather easy, such as saying "the", and some were more difficult, such as spelling a word out loud) and showing them lists to remember. Results showed that articulatory suppression of any kind reduced the strength in which an individual encoded visual information into their memory. However, participants who were in the more difficult articulatory suppression group remembered much less of the list of words than did those with an easier articulatory suppression task. The reason for this finding is because if an individual is using more effort in remembering how to do something (i.e. spell a word), they are obligated to pay less attention to additional visual information that is presented at the same time. [5]

Hanley and Shah [6] looked at the role of irrelevant sound effect under articulatory suppression. During this experiment, participants wore stereo headphones when being tested. During the testing, participants heard an experimental list of items through the right headphone spoken by a female voice. Participants were instructed to repeat the word "the" at a rate of approximately two repetitions per second. There was a retention interval of 10 seconds between the final item and the recall of target items. Irrelevant sound took place when a male voice was spoken in the left headphone throughout the retention interval, right before the recall of items. The results from this study showed that there was a significant effect of irrelevant sound under articulatory suppression when the list items were followed by an auditory tone, but the effect was abolished when followed by a spoken suffix.

In the real world

Articulatory suppression can have many relevant uses in the 'real world', especially when looking at people that are bilingual or learning a second language. Overall, researchers have found that the ability to memorize or recall anything while using articulatory suppression is significantly reduced. This is because the repeating of nonsense syllables prevents the individual from committing the information to memory. When learning languages, the ability to hear a word and then add that word to an individual's vocabulary is crucial to progressing in that language. Studies are being done to investigate the mechanism by which articulatory suppression inhibits that ability. With increased understanding of how that process works, improved learning and studying strategies may be able to be developed to help people with second languages or with other aspects of memory.

One study looked at interpreters, their impressive working memories and the effects that articulatory suppression can have on their ability to translate and interpret language. [7] Specifically, researchers wanted to look at the differences between simultaneous interpreting and articulatory suppression as they relate to working memory. To do this, thirty Dutch university students with English as a second language participated and were read a story in English and then were asked to translate to Dutch as they listened, but only translate the meaning, not the exact words.

Then, another experiment was performed with the same participants. In this study there were two important variables that were under the control of the researcher: the articulatory suppression variable (no articulatory suppression, articulatory suppression or complex articulatory suppression) and whether the story that was read to the students was coherent or not. Participants in the articulatory suppression condition said "de, de, de" while the story was read and in the complex articulatory suppression condition, they said 'hond, kat, muis' (i.e. dog, cat, mouse) while listening to the story. After the story was read, each participant was told to recall and write down as much of the story as they could remember in exact wording.

From this study, researchers came to the conclusion that articulatory suppression inhibits the ability for the participants to recall the story, as many other studies have shown. However, interpreters are somewhat immune to the effects of articulatory suppression. This could be because interpreters are quicker to transfer information to their episodic buffer, which may allow them to bypass the rehearsal that most people find necessary to retain information. Articulatory suppression interferes with rehearsal, which is why most people show poor recall when engaging in articulatory suppression.

Verbal overshadowing and face identification

A study by Wickham & Swift [8] looks at the role that articulatory suppression can have on verbal overshadowing and face identification. Verbal overshadowing is the phenomenon that verbally describing a face between presentation and test can impair identification of the face (Schooler & Engstler-Schooler, 1990). This study had the goal of looking to see how important verbal encoding is to face recognition and also how it interacts with verbal overshadowing by using articulatory suppression to force the individual to rely on their visual code instead of the phonological code. Participants were asked to perform a procedure that included studying a face carefully for five seconds. During these five seconds, they were repeating the word 'the'. Then, participants were either given one minute to write down a description of the face they just saw or were given a crossword puzzle to complete to distract them. Then, participants were shown ten faces, of which there were nine faces that were very similar and one face that was considered the target, or the one they just studied. This procedure was repeated twelve times for each participant. Researchers found several interesting conclusions from their study. First, they found that "articulatory suppression significantly reduced the identification scores of no description participants but not the description participants." This means that articulatory suppression has an effect on facial identification in that it impairs one's ability to recognize a face. This study also found that when participants were using articulatory suppression, the verbal overshadowing effect did not occur. This would seem to suggest that the encoding of faces and the verbal overshadowing effect comes from a problem with the verbal code, not the visual code. Because having that distracter syllable did not hinder the individual's ability to recognize the face more than describing it did, it would not be a problem with disrupting what the participants encoded visually, but the verbal aspects that interferes and creates the verbal overshadowing effect.

From these studies, it can be seen how this information can be used in everyday life to help understand and improve memory. As discussed before, the studies shown that information is best encoded when there is no auditory information to interfere with the rehearsal of the information. This could be helpful to students who like to listen to music while studying or to anyone trying to encode information. The second study suggests that the ability to simultaneously interpret language might enable individuals to bypass the effects of articulatory suppression. Perhaps researchers would be able to investigate if being multi-lingual helps with this or if there is some brain process that makes it easier for them to encode information to memory and therefore to learn multiple languages and then easily interpret between them. Lastly, the study regarding face recognition and identification reinforces the notion that articulatory suppression interferes with an individual's ability to encode information.

Task switching

In our every day-to-day life, articulatory suppression can affect our ability to switch between tasks. A study by Liefooghe, Vandierendonck, Muyllaert, Verbruggen and Vanneste [9] looked at the role of articulatory suppression can have on task switching. During their study, they conducted three experiments. In the first experiment, participants were asked to sort cards and were instructed either to perform the task silently or to repeat the word "de". The results indicated that articulatory suppression affected how quick participants were to switching between the sorting tasks. The reaction time increased for participants who were under articulatory suppression compared to those who were not. The remaining two experiments also received results indicating articulatory suppression had an effect on task switching.

Results from Saeki and Saito's [10] study concluded the effect of articulatory suppression on mixing cost during task switching but not on the actual switch cost. Their study tested participants in their verbal representation in sequential task decisions. The results indicated the use of verbal representation is effective in sequential task decision, which could be affected by articulatory suppression. Saeki, Saito and Kawaguchi [11] tested the effects of three concurrent task conditions on task switching (control, articulatory suppression, and tapping). The results obtained from their study concluded that articulatory suppression had a greater effect compared to the control and tapping conditions.

From the current studies, one can see that articulatory suppression does affect the ability and reaction time in task switching conditions. Wallace, Silvers, Martin, & Kenworthy [12] conducted experiments to see if individuals with autism use inner speech in task completion. The results from this study also provided information on the effect of articulatory suppression on task switching and completion. Further studies can look at the effect of articulatory suppression on certain professions and the correlations between their experience in task switching and the effect of articulatory suppression.

False memories

A study by Macé and Caza [13] looked at the role of articulatory suppression on immediate false recognition. During their first experiment, they created two groups of participants randomly. Participants in both groups were asked to listen to a list of words through headphones; and were instructed to point to "yes" or "no" during the second list in whether they recalled that word from the first list. Participants in the articulatory suppression group were instructed to count 1 to 10 during both presentations of the lists and until completion of responding to the second list. Results from this study indicated, the effects of articulatory suppression increased false recognition of mismatching words on the second list.

A current study done by Van Damme, Menten and d'Ydewalle [14] looked at the effects of articulatory suppression on explicit false memory. The study consisted of an experiment, which looked at the effects on explicit memory compared to implicit and veridical memory. The results of their study showed that articulatory suppression, during encoding information, eliminated implicit false memory and heightened explicit false memory.

Results from both of these studies, indicate that articulatory suppression has an effect on how we retain information and in increasing our false recognition of memories. Further studies can look at how this effect can contribute to eyewitness testimonies and in recall of events.

Effects on working memory

A study by Hayes and Chenoweth [15] looks at the role of articulatory suppression in working memory. The articulatory suppression condition group asked participants to repeat the word "tap" aloud to a metronome while they transcribed text. The control group had to tap their foot to the metronome as they transcribed the text. The results of the study indicated, that participants who were under articulatory suppression condition had a significant reduction in typing rate and significant increase in the number of uncorrected errors. In summary, this study shows how articulatory suppression interfered with verbal working memory.

Working memory works with both phonological loop and the visuospatial sketchpad, in the study performed by Jalbert and Saint-Aubin. [16] They looked at the effects of articulatory suppression on visual similarity recall for where and when. Their experiment consisted of participants placing a series of colored squares into their appropriate locations, as presented before. During the experiment, participants who experienced articulatory suppression were hindered by similarity in recalling the location of the colored squares.

Information from both of these studies indicated that articulatory suppression has an effect on working memory in performing tasks. In the first study, the effects of articulatory suppression took place as participants transcribed text, which included using their working memory. In the second experiment, participants were asked to use their visuospatial sketchpad to recall the location of colored squares, but articulatory suppression took a great deal of their working memory in performing these tasks, which hindered participants.

Related Research Articles

Working memory is a cognitive system with a limited capacity that can hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term memory, but some theorists consider the two forms of memory distinct, assuming that working memory allows for the manipulation of stored information, whereas short-term memory only refers to the short-term storage of information. Working memory is a theoretical concept central to cognitive psychology, neuropsychology, and neuroscience.

Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.

Serial-position effect is the tendency of a person to recall the first and last items in a series best, and the middle items worst. The term was coined by Hermann Ebbinghaus through studies he performed on himself, and refers to the finding that recall accuracy varies as a function of an item's position within a study list. When asked to recall a list of items in any order, people tend to begin recall with the end of the list, recalling those items best. Among earlier list items, the first few items are recalled more frequently than the middle items.

Baddeley's model of working memory is a model of human memory proposed by Alan Baddeley and Graham Hitch in 1974, in an attempt to present a more accurate model of primary memory. Working memory splits primary memory into multiple components, rather than considering it to be a single, unified construct.

<span class="mw-page-title-main">Subvocalization</span> Internal process while reading

Subvocalization, or silent speech, is the internal speech typically made when reading; it provides the sound of the word as it is read. This is a natural process when reading and it helps the mind to access meanings to comprehend and remember what is read, potentially reducing cognitive load.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace.

State-dependent memory or state-dependent learning is the phenomenon where people remember more information if their physical or mental state is the same at time of encoding and time of recall. State-dependent memory is heavily researched in regards to its employment both in regards to synthetic states of consciousness as well as organic states of consciousness such as mood. While state-dependent memory may seem rather similar to context-dependent memory, context-dependent memory involves an individual's external environment and conditions while state-dependent memory applies to the individual's internal conditions.

Self-referential encoding is a method of organizing information in one's memory in which one interprets incoming information in relation to oneself, using one's self-concept as a background. Examples include being able to attribute personality traits to oneself or to identify recollected episodes as being personal memories of the past. The implications of self-referential processing are evident in many psychological phenomena. For example, the "cocktail party effect" notes that people attend to the sound of their names even during other conversation or more prominent, distracting noise. Also, people tend to evaluate things related to themselves more positively. For example, people tend to prefer their own initials over other letters. The self-reference effect (SRE) has received the most attention through investigations into memory. The concepts of self-referential encoding and the SRE rely on the notion that relating information to the self during the process of encoding it in memory facilitates recall, hence the effect of self-reference on memory. In essence, researchers have investigated the potential mnemonic properties of self-reference.

Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows a perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from long-term memory. Working memory stores information for immediate use or manipulation which is aided through hooking onto previously archived items already present in the long-term memory of an individual.

In psychology and neuroscience, memory span is the longest list of items that a person can repeat back in correct order immediately after presentation on 50% of all trials. Items may include words, numbers, or letters. The task is known as digit span when numbers are used. Memory span is a common measure of working memory and short-term memory. It is also a component of cognitive ability tests such as the WAIS. Backward memory span is a more challenging variation which involves recalling items in reverse order.

Transfer-appropriate processing (TAP) is a type of state-dependent memory specifically showing that memory performance is not only determined by the depth of processing, but by the relationship between how information is initially encoded and how it is later retrieved.

The irrelevant speech effect (ISE) or irrelevant sound effect is the degradation of serial recall of a list when sounds, especially speech sounds, are presented. This occurs even if the list items are presented visually. The sounds do not need to be a language the participant understands, or even a real language; human speech sounds are sufficient to produce this effect.

Musical memory refers to the ability to remember music-related information, such as melodic content and other progressions of tones or pitches. The differences found between linguistic memory and musical memory have led researchers to theorize that musical memory is encoded differently from language and may constitute an independent part of the phonological loop. The use of this term is problematic, however, since it implies input from a verbal system, whereas music is in principle nonverbal.

In psychology, context-dependent memory is the improved recall of specific episodes or information when the context present at encoding and retrieval are the same. In a simpler manner, "when events are represented in memory, contextual information is stored along with memory targets; the context can therefore cue memories containing that contextual information". One particularly common example of context-dependence at work occurs when an individual has lost an item in an unknown location. Typically, people try to systematically "retrace their steps" to determine all of the possible places where the item might be located. Based on the role that context plays in determining recall, it is not at all surprising that individuals often quite easily discover the lost item upon returning to the correct context. This concept is heavily related to the encoding specificity principle.

Eyewitness memory is a person's episodic memory for a crime or other witnessed dramatic event. Eyewitness testimony is often relied upon in the judicial system. It can also refer to an individual's memory for a face, where they are required to remember the face of their perpetrator, for example. However, the accuracy of eyewitness memories is sometimes questioned because there are many factors that can act during encoding and retrieval of the witnessed event which may adversely affect the creation and maintenance of the memory for the event. Experts have found evidence to suggest that eyewitness memory is fallible.

<span class="mw-page-title-main">Bilingual memory</span>

Bilingualism is the regular use of two fluent languages, and bilinguals are those individuals who need and use two languages in their everyday lives. A person's bilingual memories are heavily dependent on the person's fluency, the age the second language was acquired, and high language proficiency to both languages. High proficiency provides mental flexibility across all domains of thought and forces them to adopt strategies that accelerate cognitive development. People who are bilingual integrate and organize the information of two languages, which creates advantages in terms of many cognitive abilities, such as intelligence, creativity, analogical reasoning, classification skills, problem solving, learning strategies, and thinking flexibility.

Serial memory processing is the act of attending to and processing one item at a time. This is usually contrasted against parallel memory processing, which is the act of attending to and processing all items simultaneously.

Verbal overshadowing is a phenomenon where giving a verbal description of sensory input impairs formation of memories of that input. This was first reported by Schooler and Engstler-Schooler (1990) where it was shown that the effects can be observed across multiple domains of cognition which are known to rely on non-verbal knowledge and perceptual expertise. One example of this is memory, which has been known to be influenced by language. Seminal work by Carmichael and collaborators (1932) demonstrated that when verbal labels are connected to non-verbal forms during an individual's encoding process, it could potentially bias the way those forms are reproduced. Because of this, memory performance relying on reportable aspects of memory that encode visual forms should be vulnerable to the effects of verbalization.

Elaborative encoding is a mnemonic that relates to-be-remembered information to previously existing memories and knowledge.

<span class="mw-page-title-main">Forward testing effect</span>

The forward testing effect, also known as test potentiated new learning, is a psychological learning theory which suggests that testing old information can improve learning of new information. Unlike traditional learning theories in educational psychology which have established the positive effect testing has when later attempting to retrieve the same information, the forward testing effect instead suggests that the testing experience itself possesses unique benefits which enhance the learning of new information. This memory effect is also distinct from the 'practice effect' which typically refers to an observed improvement which results from repetition and restudy, as the testing itself is considered as the catalyst for improved recall. Instead, this theory suggests that testing serves not only as a tool for assessment but as a learning tool which can aid in memory recall. The forward testing effect indicates that educators should encourage students to study using testing techniques rather than restudying information repeatedly.

References

  1. Saito, S (1998). "Phonological loop and intermittent activity: A whistle task as articulatory suppression". Canadian Journal of Experimental Psychology. 1. 52: 18–24. doi:10.1037/h0087275.
  2. Saito, S (1997). "When articulatory suppression does not suppress the activity of the phonological loop". British Journal of Psychology. 88 (4): 565–578. doi:10.1111/j.2044-8295.1997.tb02658.x.
  3. Franssen, Vicky (2006). "Duration estimation and the phonological loop: Articulatory suppression and irrelevant sounds". Psychological Research. 70 (4): 304–316. doi:10.1007/s00426-005-0217-x. PMID   16001277. S2CID   44686391.
  4. Neath, I; Farley, L.A.; Suprenant, A.M. (2003). "Directly assessing the relationship between irrelevant speech and articulatory suppression". The Quarterly Journal of Experimental Psychology: Human Experimental Psychology. 8. 56A (8): 1269–1278. doi:10.1080/02724980244000756. PMID   14578083. S2CID   35816053.
  5. Murray, D.J.; Rowan, A.J.; Smith, K.H. (1988). "The effect of articulatory suppression on short-term recognition". Canadian Journal of Psychology. 4. 42 (4): 424–436. doi:10.1037/h0084204.
  6. Hanley, R.; N. Shah (2012). "The irrelevant sound effect under articulatory suppression is a suffix effect even with five-item lists". Memory. 20 (5): 415–419. doi:10.1080/09658211.2012.670249. PMID   22497740. S2CID   13137122.
  7. Christoffels, I.K. (2006). "Listening while talking: The retention of prose under articulatory suppression in relation to simultaneous interpreting". European Journal of Cognitive Psychology. 2. 18 (2): 206–220. doi:10.1080/09541440500162073. hdl: 1887/14222 . S2CID   144277422.
  8. Wickham, L.V.; Swift, H. (2006). "Articulatory suppression attenuates the verbal overshadowing effect: A role for verbal encoding in face identification". Applied Cognitive Psychology. 2. 20 (2): 157–169. doi:10.1002/acp.1176.
  9. Baptist, Liefooghe; et al. (2005). "The phonological loop in task alternation and task repetition". Memory. 13 (5): 550–560. doi:10.1080/09658210444000250. PMID   16020382. S2CID   8474079.
  10. Saeki, E.; S. Saito (2009). "Verbal representation in task order control: An examination with transition and task cues in random task switching". Memory & Cognition. 37 (7): 1040–1050. doi: 10.3758/MC.37.7.1040 . PMID   19744942.
  11. Saeki, Erina; Satoru Saito; Jun Kawaguchi (2006). "Effects of response-stimulus interval manipulation and articulatory suppression on task switching". Memory. 14 (8): 965–976. doi:10.1080/09658210601008973. PMID   17077031. S2CID   31232575.
  12. Wallace, Gregory; Jennifer A Silvers; Alex Martin; Lauren E Kenworthy (2009). "Brief report: Further evidence for inner speech deficits in autism spectrum disorders". Journal of Autism and Developmental Disorders. 39 (12): 1735–1739. doi:10.1007/s10803-009-0802-8. PMC   2974759 . PMID   19565331.
  13. Macé, A.; N. Caza (2011). "Verbal representation in task order control: An examination with transition and task cues in random task switching". Memory & Cognition. 19 (8): 891–900. doi:10.1080/09658211.2011.613844. PMID   22032514. S2CID   11315697.
  14. Van Damme, Ilse; Jan Menten; Géry d'Ydewalle (2010). "The effect of articulatory suppression on implicit and explicit false memory in the DRM paradigm". Memory. 18 (8): 822–830. doi:10.1080/09658211.2010.509733. PMID   20924945. S2CID   31086542.
  15. Hayes, John; A. Chenoweth (2006). "Is Working Memory Involved in the Transcribing and Editing of Texts?". Written Communication. 23 (2): 135–149. doi:10.1177/0741088306286283. S2CID   143294317.
  16. Jalbert, Annie; Jean Saint-Aubin; Sébastien Tremblay (2008). "Visual similarity in short-term recall for where and when". The Quarterly Journal of Experimental Psychology. 61 (3): 353–360. doi: 10.1080/17470210701634537 . PMID   17943647.