BPL (complexity)

Last updated

In computational complexity theory, BPL (Bounded-error Probabilistic Logarithmic-space), [1] sometimes called BPLP (Bounded-error Probabilistic Logarithmic-space Polynomial-time), [2] is the complexity class of problems solvable in logarithmic space and polynomial time with probabilistic Turing machines with two-sided error. It is named in analogy with BPP , which is similar but has no logarithmic space restriction.

Contents

Error model

The probabilistic Turing machines in the definition of BPL may only accept or reject incorrectly less than 1/3 of the time; this is called two-sided error. The constant 1/3 is arbitrary; any x with 0 ≤ x < 1/2 would suffice. This error can be made 2p(x) times smaller for any polynomial p(x) without using more than polynomial time or logarithmic space by running the algorithm repeatedly.

Since two-sided error is more general than one-sided error, RL and its complement co-RL are contained in BPL. BPL is also contained in PL , which is similar except that the error bound is 1/2, instead of a constant less than 1/2; like the class PP , the class PL is less practical because it may require a large number of rounds to reduce the error probability to a small constant.

Nisan (1994) showed the weak derandomization result that BPL is contained in SC . [3] SC is the class of problems solvable in polynomial time and polylogarithmic space on a deterministic Turing machine; in other words, this result shows that, given polylogarithmic space, a deterministic machine can simulate logarithmic space probabilistic algorithms.

BPL is contained in NC and in L/poly . Saks and Zhou showed that BPL is contained in DSPACE(log3/2 n), [4] and in 2021 Hoza improved this to show BPL is contained in DSPACE. [5]

Related Research Articles

In computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.

Computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can—unlike a deterministic Turing Machine—have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution.

The space complexity of an algorithm or a computer program is the amount of memory space required to solve an instance of the computational problem as a function of characteristics of the input. It is the memory required by an algorithm until it executes completely.

Time complexity Estimate of time taken for running an algorithm

In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.

A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output are random variables.

Complexity class Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.

In computational complexity theory, a probabilistically checkable proof (PCP) is a type of proof that can be checked by a randomized algorithm using a bounded amount of randomness and reading a bounded number of bits of the proof. The algorithm is then required to accept correct proofs and reject incorrect proofs with very high probability. A standard proof, as used in the verifier-based definition of the complexity class NP, also satisfies these requirements, since the checking procedure deterministically reads the whole proof, always accepts correct proofs and rejects incorrect proofs. However, what makes them interesting is the existence of probabilistically checkable proofs that can be checked by reading only a few bits of the proof using randomness in an essential way.

In computational complexity theory, non-deterministic space or NSPACE is the computational resource describing the memory space for a non-deterministic Turing machine. It is the non-deterministic counterpart of DSPACE.

In computational complexity theory, DSPACE or SPACE is the computational resource describing the resource of memory space for a deterministic Turing machine. It represents the total amount of memory space that a "normal" physical computer would need to solve a given computational problem with a given algorithm.

In computational complexity theory, NL is the complexity class containing decision problems that can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space.

In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.

Randomized Logarithmic-space (RL), sometimes called RLP, is the complexity class of computational complexity theory problems solvable in logarithmic space and polynomial time with probabilistic Turing machines with one-sided error. It is named in analogy with RP, which is similar but has no logarithmic space restriction.

In theoretical computer science and cryptography, a pseudorandom generator (PRG) for a class of statistical tests is a deterministic procedure that maps a random seed to a longer pseudorandom string such that no statistical test in the class can distinguish between the output of the generator and the uniform distribution. The random seed itself is typically a short binary string drawn from the uniform distribution.

In computational complexity theory, L/poly is the complexity class of logarithmic space machines with a polynomial amount of advice. L/poly is a non-uniform logarithmic space class, analogous to the non-uniform polynomial time class P/poly.

In computational complexity theory, a certificate is a string that certifies the answer to a computation, or certifies the membership of some string in a language. A certificate is often thought of as a solution path within a verification process, which is used to check whether a problem gives the answer "Yes" or "No".

In computational complexity theory, SC is the complexity class of problems solvable by a deterministic Turing machine in polynomial time and polylogarithmic space. It may also be called DTISP(poly, polylog), where DTISP stands for deterministic time and space. Note that the definition of SC differs from PPolyL, since for the former, it is required that a single algorithm runs in both polynomial time and polylogarithmic space; while for the latter, two separate algorithms will suffice: one that runs in polynomial time, and another that runs in polylogarithmic space..

Structural complexity theory

In computational complexity theory of computer science, the structural complexity theory or simply structural complexity is the study of complexity classes, rather than computational complexity of individual problems and algorithms. It involves the research of both internal structures of various complexity classes and the relations between different complexity classes.

In computational complexity theory, polyL is the complexity class of decision problems that can be solved on a deterministic Turing machine by an algorithm whose space complexity is bounded by a polylogarithmic function in the size of the input. In other words, polyL = DSPACE( O ), where n denotes the input size, and O(1) denotes a constant.

References

  1. "Complexity Zoo: BPL". Archived from the original on 2012-08-05. Retrieved 2011-10-04.
  2. Borodin, A.; Cook, S. A.; Dymond, P. W.; Ruzzo, W. L.; Tompa, M. (1989), "Two applications of inductive counting for complementation problems", SIAM Journal on Computing , 18 (3): 559–578, CiteSeerX   10.1.1.394.1662 , doi:10.1137/0218038
  3. Nisan, N. (1994), "RL ⊆ SC", Computational Complexity, 4 (1): 1–11, doi:10.1007/BF01205052, An earlier version of this paper appeared at the 1992 Symposium on Theory of Computing
  4. Complexity theory lecture notes
  5. Hoza, William (2021). "Better Pseudodistributions and Derandomization for Space-Bounded Computation".