Bernard Marshall Gordon

Last updated

Bernard Marshall Gordon (born 1927 in Springfield, Massachusetts) is an American engineer, inventor, entrepreneur, and philanthropist. He is considered "the father of high-speed analog-to-digital conversion". [1]

Contents

Early life, education, and career

At an early age Gordon developed an interest in electronics. Upon graduation from Springfield's Technical High School, he enlisted in the US Navy and later became a commissioned officer. He earned BS and MA degrees in Electrical Engineering at the Massachusetts Institute of Technology via the V-12 program and the GI Bill.

In 1947, Gordon began his technical career at Philco Corporation and later joined the Eckert-Mauchly Computer Corporation, where he was responsible for the development of the standard circuits, acoustic memory, supervisory control, and input/output circuits of the first commercial computer, UNIVAC I. [2]

He subsequently worked at the Laboratory for Electronics (LFE), a spinoff of the wartime Radiation Laboratory at MIT. While there, Gordon helped create the first current switching digital-to-analog converter in 1951 as part of the first digital pulse position indicators for radar.

A/D conversion

From the late 1930s into the early 1950s, digital signal processing was an attractive idea. However, progress was limited and then state-of-the-art systems were slow, offering limited precision, and were only a modest improvement over purely manual methods.

In 1953, Gordon and Joseph H. Davis co-founded EPSCO, Inc. to manufacture a variety of electronic components and subassemblies. While at EPSCO, in 1953–54, Gordon created high-precision and high-speed signal processing, including the core technologies of analog-to-digital conversion. These developments were fundamental to the subsequent medical diagnostic tools, and have influenced therapeutic practice as well. Gordon publicized these developments in his paper, "A high-speed AD converter and its possible applications", delivered to the 1955 conference of the Instrument Society of America.

Building on this work, Gordon and his engineering teams developed the first solid-state x-ray generator, the first quadrature-base band phased-array ultrasound system, and the first instant imaging computer-aided tomography system, among many other related inventions. These developments enabled subsequent advances in fields as diverse as aerospace telemetry, industrial control, communications, and many modern consumer products which rely on the digitization of analog measurement, audio, video, and optical inputs. [2] [3]

EPSCO grew rapidly for several years. Gordon later left the company and in 1963, founded Gordon Engineering. In 1967, Gordon Engineering became Analogic Corporation and at various times Gordon served as chairman of the board of directors, president, executive chairman, and chief executive officer. While at Analogic, he and the teams of engineers he led conceived and developed the first digital waveform analyzing and computing instrumentation; "instant imaging" Computed Tomography (CT) system; portable, mobile CT scanner; and the first three-dimensional, multi-slice, dual-energy explosive detection CT system, among many other pioneering products. [2]

In 2004, after leaving the active management of Analogic, he co-founded NeuroLogica Corporation of Danvers, Massachusetts, where he served as chairman of the board. Its first project was a portable imaging system, for neurological scanning applications, which could assist stroke and trauma victims. [4] The company was acquired by Samsung Electronics in 2013. He retired from Analogic's board of directors in 2009. [5]

In 2009, he co-founded Photo Diagnostic Systems, Inc with Olof Johnson. That company that went on to design and manufacture imaging products in medicine, veterinary medicine, and aviation security. Its first product was the first commercial solid-state PET/CT the NeuroPET-CT for brain imaging. PDSI later developed a security imager that was integrated into the DETECT1000 product by Integrated Defense and Security Solutions, a vertical CT for imaging of horses, the Equina for Asto CT as well as other products. [6] [7]

Involvement with education

Over the course of his career, Gordon has frequently advocated for more thorough training of engineers and, in particular, for encouraging greater leadership capabilities in engineers. To that end, In 1984 he established the Gordon Institute, a graduate-level program for career engineers located in Wakefield, Massachusetts. In 1992, Gordon allied his Gordon Institute with the Tufts University College of Engineering in nearby Medford, Massachusetts.

In 2002, he established The Gordon Center for systems engineering as part of the Technion Israel Institute of Technology. Its post-graduate program (Master of Engineering in Systems Engineering) has produced hundreds of graduates. [4]

In 2007, Gordon provided a $20 million gift (with a matching requirement) to establish the Gordon-MIT Engineering Leadership (GEL) Program, in part to create a national model for preparing the engineering leaders of the 21st century. Immediately following its inception, the program began gathering input from industrial and academic sources to inform creation of the program and curriculum. GEL's foundational document, the Capabilities of Effective Engineering Leaders, was a result.

In 2009, Gordon established the Gordon Institute for Engineering Leadership at Northeastern University through a $40 million grant. [8] The institute's mission is to identify candidates to pursue engineering leadership skills as part of a Master of Science degree in a range of engineering disciplines, or as a standalone Certificate in Engineering Leadership. [9] [10]

Gordon has been both influential and supportive of a number of other engineering programs in the US.[ which? ]

Bernard M. Gordon Prize for Innovation in Engineering and Technology Education

Inaugurated in 2001 by the National Academy of Engineering (NAE), the intent of the Gordon Prize is to recognize new modalities and experiments in education that develop effective engineering leaders. The focus is on innovations such as curricular design, teaching methods, and technology-enabled learning that strengthen students' capabilities and desire to grow into leadership roles.

The Gordon Prize is presented annually, and the recipient receives a $500,000 cash award, half granted to the recipient and the remainder granted to the recipient's institution to support the continued development, refinement, and dissemination of the recognized innovation. NAE members and non-members who are US citizens or permanent residents of the US, and who currently are and have been substantially engaged in their engineering and scholastic work in institutions within the US are eligible for the Gordon Prize.

Other philanthropy

Gordon and his wife, Sofia, also provided substantial funding to Brigham and Women's Hospital, Boston; Lahey Clinic (now Lahey Hospital and Medical Center), Burlington, Massachusetts, Salem State University, Salem, Massachusetts, and the Boston Museum of Science.

Awards and honors

Publications

Patents (partial listing)

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body.

<span class="mw-page-title-main">Radiography</span> Imaging technique using ionizing and non-ionizing radiation

Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical and industrial radiography. Similar techniques are used in airport security,. To create an image in conventional radiography, a beam of X-rays is produced by an X-ray generator and it is projected towards the object. A certain amount of the X-rays or other radiation are absorbed by the object, dependent on the object's density and structural composition. The X-rays that pass through the object are captured behind the object by a detector. The generation of flat two-dimensional images by this technique is called projectional radiography. In computed tomography, an X-ray source and its associated detectors rotate around the subject, which itself moves through the conical X-ray beam produced. Any given point within the subject is crossed from many directions by many different beams at different times. Information regarding the attenuation of these beams is collated and subjected to computation to generate two-dimensional images on three planes which can be further processed to produce a three-dimensional image.

<span class="mw-page-title-main">Sampling (signal processing)</span> Measurement of a signal at discrete time intervals

In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values.

<span class="mw-page-title-main">Tomography</span> Imaging by sections or sectioning using a penetrative wave

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.

<span class="mw-page-title-main">Analog Devices</span> American semiconductor manufacturer

Analog Devices, Inc. (ADI), also known simply as Analog, is an American multinational semiconductor company specializing in data conversion, signal processing, and power management technology, headquartered in Wilmington, Massachusetts.

<span class="mw-page-title-main">X-ray microtomography</span> X-ray 3D imaging method

In radiography, X-ray microtomography uses X-rays to create cross-sections of a physical object that can be used to recreate a virtual model without destroying the original object. It is similar to tomography and X-ray computed tomography. The prefix micro- is used to indicate that the pixel sizes of the cross-sections are in the micrometre range. These pixel sizes have also resulted in creation of its synonyms high-resolution X-ray tomography, micro-computed tomography, and similar terms. Sometimes the terms high-resolution computed tomography (HRCT) and micro-CT are differentiated, but in other cases the term high-resolution micro-CT is used. Virtually all tomography today is computed tomography.

Willi A. Kalender is a German medical physicist and professor and former chairman of the Institute of Medical Physics of the University of Erlangen-Nuremberg. Kalender has produced several new technologies in the field of diagnostic radiology imaging.

<span class="mw-page-title-main">Analogic Corporation</span>

Analogic is an American multinational corporation that provides health care and security technology products.

<span class="mw-page-title-main">PET-CT</span> Medical imaging method

Positron emission tomography–computed tomography is a nuclear medicine technique which combines, in a single gantry, a positron emission tomography (PET) scanner and an x-ray computed tomography (CT) scanner, to acquire sequential images from both devices in the same session, which are combined into a single superposed (co-registered) image. Thus, functional imaging obtained by PET, which depicts the spatial distribution of metabolic or biochemical activity in the body can be more precisely aligned or correlated with anatomic imaging obtained by CT scanning. Two- and three-dimensional image reconstruction may be rendered as a function of a common software and control system.

<span class="mw-page-title-main">Automatic exposure control</span>

Automatic Exposure Control (AEC) is an X-ray exposure termination device. A medical radiographic exposure is always initiated by a human operator but an AEC detector system may be used to terminate the exposure when a predetermined amount of radiation has been received. The intention of AEC is to provide consistent x-ray image exposure, whether to film, a digital detector or a CT scanner. AEC systems may also automatically set exposure factors such as the X-ray tube current and voltage in a CT.

The computed tomography dose index (CTDI) is a commonly used radiation exposure index in X-ray computed tomography (CT), first defined in 1981. The unit of CTDI is the gray (Gy) and it can be used in conjunction with patient size to estimate the absorbed dose. The CTDI and absorbed dose may differ by more than a factor of two for small patients such as children.

John Fitzallen Moore was an American physicist, the son of authors Virginia Moore and Louis Untermeyer. His last name was legally changed after his parents' divorce. His work in military electronics, communications, and spectroscopy culminated in medical electronics and x-ray products with the founding of the company Bio-Imaging Research.

Michael Tompsett is a British-born physicist, engineer, and inventor, and the founder director of the US software company TheraManager. He is a former researcher at the English Electric Valve Company, who later moved to Bell Labs in the United States. Tompsett invented CCD imagers and designed and built the first ever video camera with a solid-state (CCD) sensor. Tompsett received the Queen Elizabeth Prize for Engineering in 2017, with Eric Fossum, George Smith, and Nobukazu Teranishi. Tompsett has also received two other lifetime awards; the New Jersey Inventors Hall of Fame 2010 Pioneer Award, and the 2012 IEEE Edison Medal. The thermal-imaging camera tube developed from his invention also earned a Queen's Award in 1987.

<span class="mw-page-title-main">Industrial computed tomography</span> Computer-aided tomographic process

Industrial computed tomography (CT) scanning is any computer-aided tomographic process, usually X-ray computed tomography, that uses irradiation to produce three-dimensional internal and external representations of a scanned object. Industrial CT scanning has been used in many areas of industry for internal inspection of components. Some of the key uses for industrial CT scanning have been flaw detection, failure analysis, metrology, assembly analysis and reverse engineering applications. Just as in medical imaging, industrial imaging includes both nontomographic radiography and computed tomographic radiography.

<span class="mw-page-title-main">Cone beam computed tomography</span> Medical imaging technique

Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.

<span class="mw-page-title-main">Coronary CT angiography</span> Use of computed tomography angiography to assess the coronary arteries of the heart

Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.

Yendluri Shanthi Pavan is an Indian electrical engineer and a professor at the Department of Electrical Engineering of the Indian Institute of Technology, Madras. He is known for his studies on mixed signal VLSI circuits and is an elected fellow of the Indian National Academy of Engineering. He is also a fellow of IEEE. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Engineering Sciences in 2012.

<span class="mw-page-title-main">Gantry (medical)</span> Radiation detector holder

In a medical facility, such as a hospital or clinic, a gantry holds radiation detectors and/or a radiation source used to diagnose or treat a patient's illness. Radiation sources may produce gamma radiation, x-rays, electromagnetic radiation, or magnetic fields depending on the purpose of the device.

<span class="mw-page-title-main">History of computed tomography</span> History of CT scanning technology

The history of X-ray computed tomography dates back to at least 1917 with the mathematical theory of the Radon transform In the early 1900s an Italian radiologist named Alessandro Vallebona invented tomography which used radiographic film to see a single slice of the body. It was not widely used until the 1930s, when Dr Bernard George Ziedses des Plantes developed a practical method for implementing the technique.

4DMedical is a medical technology company, based in Australia and the United States.

References

  1. 1 2 3 "Bernard M. Gordon - The Gordon Institute of Engineering Leadership at Northeastern University" . Retrieved 7 August 2015.
  2. 1 2 3 "Bernie Gordon | Gordon Center for Systems Engineering". Archived from the original on 2015-12-08. Retrieved 2015-12-01.
  3. 1 2 3 4 Ferguson, Laura. "The Inventive Engineer". Archived from the original on 5 March 2016. Retrieved 7 August 2015.
  4. 1 2 http://www.gordon-se.technion.ac.il/bernie-gordon/ [ verification needed ]
  5. "Analogic Announces the Retirement of Bernard Gordon From the Company's Board of Directors" (Press release). Analogic Corporation. 13 July 2009. Archived from the original on 15 March 2015. Retrieved 7 August 2015.
  6. "Leadership - Photo Diagnostic Systems, Inc". Photo Diagnostic Systems. Photo Diagnostic Systems, Inc. Retrieved 17 September 2020.
  7. MassDevice Staff. "Photo Diagnostics Rises out of PhotoDetections ashes". Massdevice. Mass Device Medical Network. Retrieved 17 September 2020.
  8. http://president.tufts.edu/blog/2009/09/09/bernard-m-gordon-gift/ [ verification needed ]
  9. http://www.northeastern.edu/gordonleadership/about-the-program/bernard-m-gordon/ [ verification needed ]
  10. http://www.northeastern.edu/gordonleadership/ [ verification needed ]