Boundary extension

Last updated

Boundary extension (BE) is a cognitive psychology phenomenon and an error of commission in which people remember more of a scene or boundary than was originally present in the original picture. [1] [2] [3] Boundary extension is typically studied using a recognition memory test where participants are shown a series of photos and then shown new photos that are either the same or have been altered in some way and asked if they are the same or different from the original photos. For example, people are typically presented with either a close-angle photo, which shows less of a picture scene, or a wide-angle photo, which shows more of a picture scene, during the study phase where the participant tries to memorize the picture and then a close or wide-angle photo during the test phase where the participant is tested on the original photos. Consequently, there are four different viewing conditions that people could experience the photos in: close-close, wide-wide, close-wide, or wide-close. If the participants respond that the new photos with more background are the same as the original photos, then they are demonstrating boundary extension because they are extending the boundary of the original photo. [2]

Contents

How psychologists have studied boundary extension has evolved over time. For example, psychologists first studied this phenomenon by asking participants to draw scenes from memory. [4] But after many studies, researchers moved to studying boundary extension through a picture recognition memory task which is the more widely used way to study boundary extension currently. [5] [6]

Boundary extension occurs with a variety of stimuli. For example, boundary extension happens with simple and complex photos, [1] simple and complex objects, [2] line-drawings, [7] and photos and objects that have been zoomed in or out varying degrees. [8] Multimodal boundary extension also happens with both the haptic and auditory senses. [9] [10] Boundary extension occurs with a variety of ages as well. For example, boundary extension is apparent very early in life in 3 to 4-month old infants [8] and for children. [1] College students are susceptible to boundary extension [11] [12] [13] [7] [6] [14] [4] [2] [15] and so are older adults. [16] Boundary extension even happens with people who have disorders such as Down syndrome. [17]

Because boundary extension is so universal regarding different altered stimuli and age groups, there are many possible causes, examples, and scenarios of boundary extension. For example, people tend to draw entire scenes instead of what was just in the picture. Also, people naturally add more background into scenes regardless of whether they are just looking at the scene or drawing it. Essentially, what is just beyond the current boundaries becomes a part of the internal representation of the recalled scene in a person’s mind. [4] In addition, many cognitive mechanisms influence boundary extension such as a source monitoring error [16] [2] and a perceptual schema. [11]

Source monitoring error

A source monitoring error can be defined as the inability to recall where information came from, [2] especially when trying to recall the source of photos. For example, participants in boundary extension experiments often tend to say that the boundary-extended test photos came from the study pictures rather than recognizing that they altered the photos in their minds to cause boundary extension, and these new photos that they are trying to remember were self-generated. [16]

Perceptual schema

A perceptual schema is a cognitive phenomenon and an internal mental representation of a scene that is created by oneself using prior knowledge and details of the world. Perceptual schemas often form when a person sees a new image because it can be a way to process the image using prior knowledge of other images that one has viewed and processed in the past. Perceptual schemas can form while the picture is being viewed for the first time or soon after. Perceptual schemas are applicable to boundary extension because one’s perceptual schema might add in background and boundary details that were not in the original photo but are a part of one’s perceptual schema of the photo. [11]

Visual memory

Visual memory can be defined as the process by which one encodes and remembers visual information such as pictures. Visual memory is relevant to boundary extension because boundary extension is a visual memory phenomenon where one has to rely on the visual aspects of memory to try and recall pictures or notice any changes in the pictures or scenes. [4] [3]

Possible causes of boundary extension

Simple BE photos with varying degrees of zoom Simple BE photos.jpg
Simple BE photos with varying degrees of zoom

There are many possible causes of boundary extension. For example, source monitoring errors, [16] [2] perceptual schemas, [11] and visual memory [4] all partially can contribute to boundary extension because they are all related to how photos are initially processed and then later remembered.

A variety of types of objects and scenes also help facilitate boundary extension. For example, simple scenes, a picture with one main object, and complex scenes, a picture with more than one main object, cause people to boundary extend. [1] [2] [18] Photos that are really similar and that have either been zoomed a large amount or a small amount also elicit boundary extension. [12] [1] [8] Furthermore, wide-angled scenes, pictures that show more of the background, and close-angled scenes, pictures that show less of the background, contribute to the boundary extension phenomenon. [4] These scenes can be of animals, landscapes, people, or other objects. [6] Scenes with rotated objects of varying degrees also elicit boundary extension. [6] Moreover, 3-D models of rooms with furniture are conducive to boundary extension compared with 2-D scenes. [11] Even neutral and emotional photos help cause boundary extension. [15] Boundary extension occurs for scene pictures, objects in pictures with blank backgrounds, and line drawings. [7] Outline-scenes and outline-objects elicit boundary extension. [14] So, a variety of different scene stimuli cause boundary extension for the average person.

How boundary extension has evolved

Complex BE photos with varying degrees of zoom Complex BE photos.jpg
Complex BE photos with varying degrees of zoom

At first, boundary extension was studied by having participants draw scenes from memory. Participants would be presented with a photo and then the photo would be taken away and participants would be asked to draw the photo from memory keeping in mind the proportions of the original photo and the background. [4] But because of the inherent tediousness and imprecision of coding and analyzing this kind of picture data, psychologists transitioned to studying boundary extension through picture recognition memory tasks. In a picture recognition memory task, participants would be shown photos in the study phase and then presented with photos that were the same or slightly altered in the test phase. They would be asked if the photo was the same or if the camera angle seemed a little further away, a lot further away, a little closer, or a lot closer. Finally, they would rate how confident they were about their answer ranging from sure, pretty sure, not sure, or did not see the picture. [5] [6]

Boundary extension affects different age groups

Boundary extension occurs no matter what age one is. For example, boundary extension is present in infants. [8] Children also have boundary extension no matter if they draw scenes from memory or complete a picture recognition task. [1] Even college students have boundary extension no matter the kind of boundary extension task. [11] [12] [13] [7] [6] [14] [4] [2] [15] Finally, adults and older adults demonstrate boundary extension tendencies as well. [16] Boundary extension will persist and occur throughout one’s life starting in infancy. [8]

Multimodal boundary extension

Visual and haptic boundary extension

Boundary extension has been explored by incorporating a haptic element into a boundary extension task. [10] The researchers had college students either view or touch 3-D scene-regions with a frame. The college students then recalled the stimuli that they had interacted with by listing what objects they had either felt or saw. Boundary extension occurred for both the visual and haptic stimuli and conditions. The researchers concluded that boundary extension occurs across modalities. People perceive and remember scenes multimodally through both their eyes and their hands. [10]

Visual and auditory boundary extension

Boundary extension has also been studied by adding an auditory element to see how sound relates to boundary extension and picture memory. [9] Researchers had participants complete the normal picture recognition memory task with an added auditory component. Participants were in one of three conditions: no sound, music, or sound effect. While viewing the photos in the study phase, participants either listened to silence, a sound relevant to the photo, or unrelated music. They then completed the normal test phase structure of the picture recognition memory task. Boundary extension occurred in all three conditions and did not differ across conditions. So, the type of noise did not affect boundary extension. Indeed, boundary extension in both auditory conditions was the same as the control condition where the participants listened to silence while viewing the photos. Auditory stimuli do not affect boundary extension at all. [9]

Boundary extension and different brains

Down syndrome

Children with Down syndrome still experienced boundary extension on the picture recognition memory task, the drawing task, and the 3-D scene memory task compared to children without Down syndrome despite the differences in their brains. Down syndrome participants typically demonstrated the most boundary extension on the drawing task. [17]

Amnesia

Among test subjects with a type of brain damage that leads to a form of amnesia, the boundary extension error ranges from significantly less erroneous to nonexistent when compared to test subjects that do not have brain damage. [19]

Related Research Articles

<span class="mw-page-title-main">Perception</span> Interpretation of sensory information

Perception is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. Vision involves light striking the retina of the eye; smell is mediated by odor molecules; and hearing involves pressure waves.

<span class="mw-page-title-main">Wishful thinking</span> Formation of beliefs based on what might be pleasing to imagine

Wishful thinking is the formation of beliefs based on what might be pleasing to imagine, rather than on evidence, rationality, or reality. It is a product of resolving conflicts between belief and desire. Methodologies to examine wishful thinking are diverse. Various disciplines and schools of thought examine related mechanisms such as neural circuitry, human cognition and emotion, types of bias, procrastination, motivation, optimism, attention and environment. This concept has been examined as a fallacy. It is related to the concept of wishful seeing.

In the philosophy of mind, neuroscience, and cognitive science, a mental image is an experience that, on most occasions, significantly resembles the experience of "perceiving" some object, event, or scene but occurs when the relevant object, event, or scene is not actually present to the senses. There are sometimes episodes, particularly on falling asleep and waking up, when the mental imagery may be dynamic, phantasmagoric, and involuntary in character, repeatedly presenting identifiable objects or actions, spilling over from waking events, or defying perception, presenting a kaleidoscopic field, in which no distinct object can be discerned. Mental imagery can sometimes produce the same effects as would be produced by the behavior or experience imagined.

Inattentional blindness or perceptual blindness occurs when an individual fails to perceive an unexpected stimulus in plain sight, purely as a result of a lack of attention rather than any vision defects or deficits. When it becomes impossible to attend to all the stimuli in a given situation, a temporary "blindness" effect can occur, as individuals fail to see unexpected but often salient objects or stimuli.

The Levels of Processing model, created by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. More analysis produce more elaborate and stronger memory than lower levels of processing. Depth of processing falls on a shallow to deep continuum. Shallow processing leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing results in a more durable memory trace. There are three levels of processing in this model. Structural processing, or visual, is when we remember only the physical quality of the word E.g how the word is spelled and how letters look. Phonemic processing includes remembering the word by the way it sounds. E.G the word tall rhymes with fall. Lastly, we have semantic processing in which we encode the meaning of the word with another word that is similar or has similar meaning. Once the word is perceived, the brain allows for a deeper processing.

<span class="mw-page-title-main">Cocktail party effect</span> Ability of the brain to focus on a single auditory stimulus by filtering out background noise

The cocktail party effect refers to a phenomenon wherein the brain focuses a person's attention on a particular stimulus, usually auditory. This focus excludes a range of other stimuli from conscious awareness, as when a partygoer follows a single conversation in a noisy room. This ability is widely distributed among humans, with most listeners more or less easily able to portion the totality of sound detected by the ears into distinct streams, and subsequently to decide which streams are most pertinent, excluding all or most others.

<span class="mw-page-title-main">Change blindness</span> Perceptual phenomenon

Change blindness is a perceptual phenomenon that occurs when a change in a visual stimulus is introduced and the observer does not notice it. For example, observers often fail to notice major differences introduced into an image while it flickers off and on again. People's poor ability to detect changes has been argued to reflect fundamental limitations of human attention. Change blindness has become a highly researched topic and some have argued that it may have important practical implications in areas such as eyewitness testimony and distractions while driving.

Categorical perception is a phenomenon of perception of distinct categories when there is a gradual change in a variable along a continuum. It was originally observed for auditory stimuli but now found to be applicable to other perceptual modalities.

In perceptual psychology, a sensory cue is a statistic or signal that can be extracted from the sensory input by a perceiver, that indicates the state of some property of the world that the perceiver is interested in perceiving.

In psychology and cognitive neuroscience, pattern recognition describes a cognitive process that matches information from a stimulus with information retrieved from memory.

Apperceptive agnosia is a failure in recognition that is due to a failure of perception. In contrast, associative agnosia is a type of agnosia where perception occurs but recognition still does not occur. When referring to apperceptive agnosia, visual and object agnosia are most commonly discussed; this occurs because apperceptive agnosia is most likely to present visual impairments. However, in addition to visual apperceptive agnosia there are also cases of apperceptive agnosia in other sensory areas.

Priming is the idea that exposure to one stimulus may influence a response to a subsequent stimulus, without conscious guidance or intention. The priming effect is the positive or negative effect of a rapidly presented stimulus on the processing of a second stimulus that appears shortly after. Generally speaking, the generation of priming effect depends on the existence of some positive or negative relationship between priming and target stimuli. For example, the word nurse might be recognized more quickly following the word doctor than following the word bread. Priming can be perceptual, associative, repetitive, positive, negative, affective, semantic, or conceptual. Priming effects involve word recognition, semantic processing, attention, unconscious processing, and many other issues, and are related to differences in various writing systems. Onset of priming effects can be almost instantaneous.

Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context.

Perceptual learning is learning better perception skills such as differentiating two musical tones from one another or categorizations of spatial and temporal patterns relevant to real-world expertise. Examples of this may include reading, seeing relations among chess pieces, and knowing whether or not an X-ray image shows a tumor.

<span class="mw-page-title-main">Visual capture</span>

In psychology, visual capture is the dominance of vision over other sense modalities in creating a percept. In this process, the visual senses influence the other parts of the somatosensory system, to result in a perceived environment that is not congruent with the actual stimuli. Through this phenomenon, the visual system is able to disregard what other information a different sensory system is conveying, and provide a logical explanation for whatever output the environment provides. Visual capture allows one to interpret the location of sound as well as the sensation of touch without actually relying on those stimuli but rather creating an output that allows the individual to perceive a coherent environment.

Haptic memory is the form of sensory memory specific to touch stimuli. Haptic memory is used regularly when assessing the necessary forces for gripping and interacting with familiar objects. It may also influence one's interactions with novel objects of an apparently similar size and density. Similar to visual iconic memory, traces of haptically acquired information are short lived and prone to decay after approximately two seconds. Haptic memory is best for stimuli applied to areas of the skin that are more sensitive to touch. Haptics involves at least two subsystems; cutaneous, or everything skin related, and kinesthetic, or joint angle and the relative location of body. Haptics generally involves active, manual examination and is quite capable of processing physical traits of objects and surfaces.

Representational momentum is a small, but reliable, error in our visual perception of moving objects. Representational moment was discovered and named by Jennifer Freyd and Ronald Finke. Instead of knowing the exact location of a moving object, viewers actually think it is a bit further along its trajectory as time goes forward. For example, people viewing an object moving from left to right that suddenly disappears will report they saw it a bit further to the right than where it actually vanished. While not a big error, it has been found in a variety of different events ranging from simple rotations to camera movement through a scene. The name "representational momentum" initially reflected the idea that the forward displacement was the result of the perceptual system having internalized, or evolved to include, basic principles of Newtonian physics, but it has come to mean forward displacements that continue a presented pattern along a variety of dimensions, not just position or orientation. As with many areas of cognitive psychology, theories can focus on bottom-up or top-down aspects of the task. Bottom-up theories of representational momentum highlight the role of eye movements and stimulus presentation, while top-down theories highlight the role of the observer's experience and expectations regarding the presented event.

Images and other stimuli contain both local features and global features. Precedence refers to the level of processing to which attention is first directed. Global precedence occurs when an individual more readily identifies the global feature when presented with a stimulus containing both global and local features. The global aspect of an object embodies the larger, overall image as a whole, whereas the local aspect consists of the individual features that make up this larger whole. Global processing is the act of processing a visual stimulus holistically. Although global precedence is generally more prevalent than local precedence, local precedence also occurs under certain circumstances and for certain individuals. Global precedence is closely related to the Gestalt principles of grouping in that the global whole is a grouping of proximal and similar objects. Within global precedence, there is also the global interference effect, which occurs when an individual is directed to identify the local characteristic, and the global characteristic subsequently interferes by slowing the reaction time.

Subliminal stimuli are any sensory stimuli below an individual's threshold for conscious perception, in contrast to supraliminal stimuli.

The psychology of film is a sub-field of the psychology of art that studies the characteristics of film and its production in relation to perception, cognition, narrative understanding, and emotion. A growing number of psychological scientists and brain scientists have begun conducting empirical studies that describe the cognitive and biological underpinnings of motion pictures or what has been called "psychocinematics". Early theoretical approaches included works by psychologists Hugo Münsterberg and Rudolf Arnheim. Cognitive film theorists David Bordwell and Noël Carroll fostered its philosophical underpinnings.

References

  1. 1 2 3 4 5 6 Kreindel, E., & Intraub, H. (2016). Anticipatory scene representation in preschool children’s recall and recognition memory. Developmental Science, 1-18. doi : 10.1111/desc.12444
  2. 1 2 3 4 5 6 7 8 9 Munger, M. P., & Multhaup, K. S., (2016). No imagination effect on boundary extension. Memory and Cognition, 44, 73-88. doi : 10.3758/s13421-015-0541-3
  3. 1 2 Aude, O. (2010). Visual scene perception. In E. Bruce Goldstein (Eds.), Encyclopedia of Perception (pp. 1111-1116). Thousand Oaks, CA: Sage.
  4. 1 2 3 4 5 6 7 8 Intraub, H., & Richardson, M. (1989). Wide-angle memories of close-up scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187. doi : 10.1037/0278-7393.15.2.179
  5. 1 2 Hubbard, T. L., Hutchinson, J. L. & Courtney, J. R. (2010). Boundary extension: Findings and theories. The Quarterly Journal of Experimental Psychology, 63, 1467-1494. doi : 10.1080/17470210903511236
  6. 1 2 3 4 5 6 Intraub, H., & Dickinson, C. A. (2008). False memory 1/20th of a second later: What the early onset of boundary extension reveals about perception. Psychological Science, 19, 1007-1014. doi : 10.1111/j.1467-9280.2008.02192.x
  7. 1 2 3 4 Gottesman C., V. & Intraub, H. (2002). Surface construal and the mental representation of scenes. Journal of Experimental Psychology: Human Perception and Performance, 28, 589-599. doi : 10.1037//0096-1523.28.3.589
  8. 1 2 3 4 5 Quinn, P. C., & Intraub, H. (2007). Perceiving ‘outside the box’ occurs early in development: Evidence for boundary extension in three-to seven-month-old infants. Child Development, 78, 324-334. doi : 10.1111/j.1467-8624.2007.01000.x
  9. 1 2 3 Gagnier, K. M. (2010). Rethinking boundary extension: the role of source monitoring in scene memory (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (Accession No. 854499379)
  10. 1 2 3 Intraub, H., Morelli, F., & Gagnier, K. M. (2015). Visual, haptic, and bimodal scene perception: Evidence for a unitary representation. Cognition, 138, 132-147. doi : 10.1016/j.cognition.2015.01.010
  11. 1 2 3 4 5 6 Bertamini, M., Jones, L. A., Spooner, A., & Hecht, H. (2005). The role of magnification, object size, context, and binocular information. Journal of Experimental Psychology: Human Perception and Performance, 31, 1288-1307. doi : 10.1037/0096-1523.31.6.1288
  12. 1 2 3 Chapman, P., Ropar, D., Mitchell, P., & Ackroyd, K. (2005). Understanding boundary extension errors in picture memory among adults and boys with and without asperger’s syndrome. Visual Cognition, 12, 1265-1290. doi : 10.1080/13506280444000508
  13. 1 2 Dickinson, C. A., & LaCombe, D. J. (2014). Objects influence the shape of remembered views: Examining global and local aspects of boundary extension. Perception, 43, 731-753. doi : 10.1068/p7631
  14. 1 2 3 Intraub, H., Gottesman, C. V., & Bills, A. J. (1998). Effects of perceiving and imagining scenes on memory for pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 186-201. doi : 10.1037/0278-7393.24.1.186
  15. 1 2 3 Safer, M. A., Christianson, S., Autry, M. W., & Österlund, K. (1998). Tunnel memory for traumatic events. Applied Cognitive Psychology, 12, 99-117. doi:10.1002/(SICI)1099- 0720(199804)12:2<99::AID-ACP509>3.0.CO;2-7
  16. 1 2 3 4 5 Multhaup, K. S., Munger, M. P., & Smith, K. C. (2016). Boundary extension is sensitive to hand position in young and older adults. Journal of Gerontology, Series B: Psychological and Social Sciences. Advance online publication. doi : 10.1093/geronb/gbw011
  17. 1 2 Spanò, G., Intraub, H., & Edgin, J. O. (2017). Testing the ‘boundaries’ of boundary extension: Anticipatory scene representation across development and disorder. Hippocampus, 27, 726-739. doi : 10.1002/hipo.22728
  18. Intraub, H. (2005). Visual scene perception. In L. Nadel (Eds.), Encyclopedia of Cognitive Science (pp. 524-527). John Wiley & Sons Ltd., UK.
  19. "In the mind's eye". UDaily.